Back to Journals » Drug Design, Development and Therapy » Volume 15

Dopamine-Mediated Vanillin Multicomponent Derivative Synthesis via Grindstone Method: Application of Antioxidant, Anti-Tyrosinase, and Cytotoxic Activities

Authors Mani A, Ahamed A, Ali D, Alarifi S, Akbar I

Received 23 October 2020

Accepted for publication 30 December 2020

Published 23 February 2021 Volume 2021:15 Pages 787—802


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Anastasios Lymperopoulos

Arunadevi Mani,1 Anis Ahamed,2 Daoud Ali,3 Saud Alarifi,3 Idhayadhulla Akbar1

1Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti -621007, Tiruchirappalli District, Tamil Nadu, India; 2Department of Botany & Microbiology, College of Sciences, King Saud University (KSU), Riyadh, Saudi Arabia; 3Department of Zoology, College of Sciences, King Saud University (KSU), Riyadh, 11451, Saudi Arabia

Correspondence: Idhayadhulla Akbar Tel +91-9994265115

Purpose: This study aimed to determine the extent of contribution of dopamine to antioxidant and anti-tyrosinase activities, by dopamine addition to vanillin. This study achieved the synthesis of dopamine-associated vanillin Mannich base derivatives prepared via a one-step reaction involving a green chemistry approach, and investigation of antioxidant and anti-tyrosinase activities.
Methods: Novel one-pot synthesis of Mannich base dopamine-connected vanillin ( 1a-l) derivatives can be achieved via green chemistry without using a catalyst. Newly-prepared compounds were characterised with FTIR and NMR (1H and 13C) spectra, mass spectra, and elemental analyses. In total, 12 compounds ( 1a-l) were synthesised and their antioxidant and anti-tyrosinase activities evaluated. Antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), hydrogen peroxide (H2O2), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and diammonium assays, ABTS•+ radical scavenging, and linoleic acid peroxidation were used to screen all synthesised compounds ( 1a-l) for anti-tyrosinase activities and cytotoxicity against MCF-7 and Vero cell lines;.
Results: The compound 1k inhibited (IC50:11.02μg/mL) the DPPH-scavenging activity to a greater extent than the standard BHT (IC50:25.17μg/mL), and showed high activity in H2O2 and NO scavenging assays. Compound 1e was more potent (96.21%) against ABTS and compound 1k was more potent (95.28%) against 2,2ʹ-azobis(2-amidinopropane)dihydrochloride antioxidant than the standard trolox. All synthesised compounds were screened for anti-tyrosinase inhibitory activity. Compound 1e had higher activity against tyrosinase (IC50=10.63 μg/mL), than kojic acid (IC50=21.52μg/mL), and was more cytotoxic (GI50 0.01μM) against MCF-7 cell line than the doxorubicin standard and other tested compounds.
Conclusion: In this study, all compounds were found to possess significant antioxidant and anti-tyrosinase activities. Compounds 1e and 1k performed well, compared with other compounds, in all assays. In addition, this study successfully identified several promising molecules that exhibited antioxidant and anti-tyrosinase activities.

Keywords: Mannich base, grindstone chemistry, antioxidant, anti-tyrosinase activity, cytotoxicity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]