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Purpose: This study aimed to determine the extent of contribution of dopamine to anti-
oxidant and anti-tyrosinase activities, by dopamine addition to vanillin. This study achieved 
the synthesis of dopamine-associated vanillin Mannich base derivatives prepared via a one- 
step reaction involving a green chemistry approach, and investigation of antioxidant and anti- 
tyrosinase activities.
Methods: Novel one-pot synthesis of Mannich base dopamine-connected vanillin (1a-l) 
derivatives can be achieved via green chemistry without using a catalyst. Newly-prepared 
compounds were characterised with FTIR and NMR (1H and 13C) spectra, mass spectra, and 
elemental analyses. In total, 12 compounds (1a-l) were synthesised and their antioxidant and 
anti-tyrosinase activities evaluated. Antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl 
(DPPH), nitric oxide (NO), hydrogen peroxide (H2O2), and 2,2′-azino-bis(3-ethylbenzothia-
zoline-6-sulfonic acid) (ABTS), and diammonium assays, ABTS•+ radical scavenging, and 
linoleic acid peroxidation were used to screen all synthesised compounds (1a-l) for anti- 
tyrosinase activities and cytotoxicity against MCF-7 and Vero cell lines;.
Results: The compound 1k inhibited (IC50:11.02µg/mL) the DPPH-scavenging activity to 
a greater extent than the standard BHT (IC50:25.17µg/mL), and showed high activity in H2O2 

and NO scavenging assays. Compound 1e was more potent (96.21%) against ABTS and 
compound 1k was more potent (95.28%) against 2,2ʹ-azobis(2-amidinopropane)dihy-
drochloride antioxidant than the standard trolox. All synthesised compounds were screened 
for anti-tyrosinase inhibitory activity. Compound 1e had higher activity against tyrosinase 
(IC50=10.63 µg/mL), than kojic acid (IC50=21.52µg/mL), and was more cytotoxic (GI50 

0.01µM) against MCF-7 cell line than the doxorubicin standard and other tested compounds.
Conclusion: In this study, all compounds were found to possess significant antioxidant and 
anti-tyrosinase activities. Compounds 1e and 1k performed well, compared with other 
compounds, in all assays. In addition, this study successfully identified several promising 
molecules that exhibited antioxidant and anti-tyrosinase activities.
Keywords: Mannich base, grindstone chemistry, antioxidant, anti-tyrosinase activity, 
cytotoxicity

Introduction
Tyrosinase inhibitors have natural, synthetic, and semi-synthetic sources,1 such as 
tropolone, hydroquinone, kojic acid,2 arbutin, and bibenzyl glycosides.3 A drawback 
of these inhibitors is the low efficacy of designing the drug.4,5 For example, tyrosine 
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and dopamine of phenol hydroxyl (OH) compounds can 
inhibit the activity of tyrosinase,6 whereas flavonoids of 
phenolic OH groups can have anti-tyrosinase and antioxi-
dant activities.7 The present study focused on dopamine with 
vanillin-containing compounds. Vanillin has anti-apoptotic, 
neuroprotective, antioxidative, and anticancer activities,8,9 

and mushroom tyrosinase active vanillin derivatives have 
been identified.10

The design and development of dopamine with vanillin 
derivatives via the Mannich condensation reaction based on 
Mannich base derivatives has been conducted previously using 
many different bioactive molecules, such as aminoalkyl 
derivatives,11 chiral types, β-amino-carbonyl compounds, pep-
tides, alkaloids, antibiotics, and vitamins.12 Additionally, 
Mannich base bioactivity includes antioxidative,13 

antifungal,14 anti-inflammatory,15 analgesic,16 anticancer,17 

vasorelaxing,18 antimalarial,19 and antitubercular20 activities.
In particular, phenolic compounds of Mannich bases, 

such as chalcones, thymols, and flavanones, have antioxidant 
compounds.21,22 Tyrosinase active Mannich base kojic acid 
derivatives have also been identified.23 However, there have 
been no previous studies, to our knowledge, regarding bio-
logically active dopamine connected to vanillin derivatives.

This study focused on the antioxidant activity of title 
compounds based on screening using various free-radical 
assays as oxidative stress may be the main cause of neurode-
generative diseases.24 The brain’s dependence on oxygen (O2) 
and high consumption of glucose makes it highly susceptible 
to oxidative stress, as leaked O2 has been implicated in the 
generation of free radicals, such as superoxide anions, hydro-
gen peroxide (H2O2), and OH.25–28 Some molecules have both 
active antioxidant and tyrosinase activities, such as 
isoeugenol29 (Figure 1). Designing antioxidant molecules 
using biosystems can protect inhibit tyrosinase enzymes and 
prevents related diseases. Flavonoids will consider the pheno-
lic OH on the effetely antioxidant and tyrosinase activities.30,31

For example, phenolic hydroxyl on the ring catechins,32,33 

baicalein,34 L-DOPA, and rosmarinic acid (Figure 1) can 
greatly enhance the tyrosinase activity. For the evidence, 
two phenolic hydroxyls can more effect the tyrosinase activ-
ity compared to one hydroxyl substitutions,35,36 and other 
example phenol hydroxyl-containing tyrosine and dopamine 
have inhibited the tyrosinase enzyme.6

Tyrosinase inhibitors are used for various applications in 
the food,37 cosmetics,38 and medicinal industries, and tyro-
sinase is responsible for melanogenesis in mammals.39,40

However, very few inhibitors have been approved for 
clinical use or for use as skin-whitening agents, and there are 

limited rapid assays for the in vitro screening of tyrosinase 
inhibitors41 hence, effective and low-cost methods need to 
be developed. Therefore, in this study, we selected the 
Grindstone method, which is a branch of green chemistry 
where solvent-free chemical reactions42,43 can take place to 
produce a high yield in an inexpensive.44 This method is 
used in the pharmaceutical industry with minimal environ-
mental impact. The undertaking of reactions under solvent- 
free reaction conditions using a grinding technique is an 
alternative to other methods.43,45

Therefore, this study had two goals; to provide the best 
model of Mannich base vanillin-connected dopamine deri-
vatives, and to test the obtained Mannich bases for possi-
ble anti-tyrosinase and antioxidative activities as well as 
provide a suitable mechanism. In addition, cytotoxic 
effects were investigated for the synthesis of Mannich 
bases against MCF-7 cancer cell lines.

Experimental
Synthesis
Spectrophotometer lambda 850 was used to check all bioac-
tivities. FT-IR (4000–400 cm–1) was recorded by Shimadzu 
8201PC analysis. Bruker DRX-300 MHz, 75 MHz was used 
for the analysis of 1H and13C NMR spectra. A Vario EL III  
organic element analyzer was used to analyze the percentage 
(%) elements (C, H, N and S) presents in synthesised 
compounds.

General Procedure for the Synthesis of 
Compound 1a-l
A reaction mixture consisting of dopamine (0.01 mol, 
1.53 g), vanillin (0.01 mol, 1.52 g), and 
N-methylacetamide (0.01 mol, 0.730 g) was mixed in 
a mortar and ground for up to 15 min at 30°C. 
Subsequently, the powdered material was washed with 
water and filtered. The filtered final solid material was 
separated by column chromatography (ethyl acetate/hexane, 
4:6) and recrystallized from suitable alcohol. The same 
method was followed for compounds 1b-l.

3-((3,4-Dihydroxyphenethyl)amino)- 
3-(4-Hydroxy-3-Methoxyphenyl)- 
N-Methylpropan Amide (1a)
A pale yellow solid, yield 92%; MF = C19H24N2O5; 
MW = 360.40; m.p. = 152–154°C; IR (KBr) νmax: 
3415 (O-H, stretch), 3345, 2853, 1640, 1603, 1400, 
1080, 1039 cm−1; 1H NMR (DMSO-d6) δ: 8.05 (s, 
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1H), 6.98 (s,1H), 6.80 (s, 1H), 6.78 (d, J = 11.0 Hz, 
1H), 6.68 (d, J = 11.12Hz, 1H), 6.69 (d, 1H), 6.66 (d, 
1H), 5.33 (s, 3H, OH), 4.13 (dd, J=11.0 Hz, J = 11.2 
Hz, 1H, CH), 3.81 (s, 3H), 3.06 (s, 3H), 2.85 (s, 2H), 
2.71 (d, J = 11.0 Hz, 1H), 2.68 (2H, s, CH2), 2.40 (1H, 
d, J=11.2 Hz), 2.08 (s, 1H); 13C NMR (DMSO-d6) δ: 
172.1, 147.3, 147.0, 145.6, 144.5, 131.9, 131.6, 122.9, 
120.3, 116.5, 115.8, 115.2, 111.2, 57.0, 56.6, 45.2, 42.5, 
36.5, 26.9; EI–MS: m/z 360 [M]+(20); HREIMS: m/z: 

calcd for C19H24N2O5: 360.17, found 360.21; Anal. 
calcd C19H24N2O5: C, 63.32; H, 6.71; N, 7.77; Found: 
C, 63.34; H, 6.74; N, 7.75.

3-((3,4-Dihydroxyphenethyl)amino)- 
N-Ethyl-3-(4-Hydroxy-3-Methoxyphenyl) 
propan Amide(1b)
Yellow solid, yield 90%; MF = C20H26N2O5; MW = 
374.43; m.p. = 171–174°C; IR (KBr) νmax: 3423, 3349, 

Figure 1 Deigning of target molecules.
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2835, 1631, 1592, 1406, 1083, 1036 (-O-CH3) cm−1; 

1H NMR (DMSO-d6) δ: 8.05 (s, 1H), 6.92 (s, 1H), 6.84 
((s, 1H), 6.76 (d, 1H), 6.72 (d, 1H), 6.68 (d, 1H), 6.64 (d, 
J = 11.0 Hz, 1H,), 5.31 (3H, s, OH), 4.18 (1H, dd, CH), 
3.84 (s, 3H), 3.10 (s, 2H), 2.87 (s, 2H), 2.69 (d, J = 11.0 
Hz, 1H), 2.67 (s, 2H), 2.45 (d, J =11.0Hz, 1H), 1.14 (s, 
3H), 2.10 (s, 1H); 13C NMR (DMSO-d6) δ: 175.1, 147.3, 
146.8, 144.9, 143.8, 131.9, 131.6, 122.9, 120.3, 116.5, 
115.8, 115.2, 111.2, 57.5, 56.1, 45.2, 42.5, 36.5, 34.2, 
15.0; EI–MS: m/z 374[M]+(24); HREIMS: m/z: calcd for 
C20H26N2O5: 374.43, found 374.40; Anal. calcd 
C20H26N2O5: C, 64.15; H, 7.00; N, 7.48; Found: C, 
64.17; H, 7.02; N, 7.46.

4-((3,4-Dihydroxyphenethyl)amino)- 
4-(4-Hydroxy-3-Methoxyphenyl)butan- 
2-one (1c)
A pale yellow solid, yield 89%; MF = C19H23NO5; MW 
= 345.39; m.p. = 160–162°C; IR (KBr) νmax: 3441, 
3332, 2831, 1630, 1595, 1404, 1080, 1021 cm−1; 

1H NMR (DMSO-d6) δ: 6.98 (s, 1H), 6.80((s, 1H), 
6.78 (d, J = 11.0 Hz, 1H), 6.70 (d, 1H, Ph-H), 6.69 (d, 
1H, Ph-H), 6.66 (d, 1H), 5.30 (s, 3H, OH), 4.11 (dd, 
1H), 3.81 (s, 3H), 2.95 (2H, d, J = 11.0 Hz), 2.85 (2H, 
s, CH2), 2.73 (d, J = 11.0 Hz, 2H), 2.68 (s, 2H, CH2), 
2.31 (1H, s, -NH), 2.13 (3H, s); 13C NMR (DMSO-d6): 
δ: 210.6, 147.3, 146.0, 145.1, 143.8, 131.9, 131.6, 
122.9, 120.3, 116.5, 115.8, 115.2, 111.2, 56.0, 55.1, 
45.5, 42.2, 36.5; EI–MS: m/z 345 [M]+(12); 
HREIMS: m/z: calcd for C19H23NO5: 345.30, found 
345.38; Anal. calcd C19H23NO5: C, 66.07; H, 6.71; N, 
4.06; Found: C, 66.09; H, 6.70; N, 4.04;.

3-((3,4-Dihydroxyphenethyl)amino)- 
3-(4-Hydroxy-3-Methoxyphenyl) 
propanamide (1d)
Yellow solid, yield 87%; MF = C18H22N2O5; MW = 
346.38; m.p. = 149–151°C; IR (KBr) νmax: 3452, 
3339, 2821, 1715, 1621, 1590, 1408, 1078, 1019 cm−1; 

1H NMR (DMSO-d6)δ: 8.08 (s, 2H, NH2), 6.98 (s, 1H), 
6.80 (s,1H), 6.70 (d, 1H), 6.69 (d, 1H), 6.78 (d, J = 
11.3Hz, 1H), 6.63 (d, 1H), 5.37 (s, 3H, OH), 4.10 (dd, 
J= 11.3Hz, J= 11.12Hz, 1H, CH), 3.81 (s, 3H), 2.85 (s, 
2H), 2.71 (d, 2H, J= 11.30Hz, CH2), 2.46 (d, J= 
11.12Hz, 2H, CH2), 2.67 (s, 2H), 2.03 (s, 1H); 
13C NMR (DMSO-d6) δ: 174.3, 147.6, 147.3, 144.3, 
140.1, 131.9, 131.6, 122.9, 120.3, 116.5, 115.8, 115.2, 

111.2, 57.1, 53.3, 45.2, 44.5, 36.5; EI–MS: m/z 346 
[M]+(31); HREIMS: m/z: calcd for C18H22N2O5: 
346.38, found 346.10; Anal. calcd C18H22N2O5: C, 
62.42; H, 6.40; N, 8.09; Found: C, 62.44; H, 6.38; 
N, 8.07;

3-((3,4-Dihydroxyphenethyl)amino)- 
3-(4-Hydroxy-3-Methoxyphenyl)- 
N-Phenylpropan Amide (1e)
A pale yellow solid, yield 93%; MF = C24H26N2O5; 
MW = 422.47; m.p.130–133°C; 3463, 3323, 2819, 
1626, 1580, 1412, 1070, 1001cm−1, 1H NMR 
(DMSO-d6) δ: 8.0 (s, 1H), 7.61 (d, J = 10.1, 2H), 7.43 
(d, J = 10.1, 2H), 7.19 (1H, d, J =10.1 Hz), 6.98 (s, 1H), 
6.80((s, 1H), 6.70 (d, 1H), 6.78 (d, J = 11.0 Hz, 1H), 
6.69 (d, 1H), 6.66 (d, 1H), 5.39 (s, 3H), 4.17 (dd, 
J=11.0Hz, J =11.2 Hz, 1H, CH), 3.81 (s, 3H, -CH3), 
2.85 (m, 2H CH2), 2.71 (d, J =11.0Hz, 2H), 2.68 (d, 2H, 
CH2), 2.52 (d, J = 11.2 Hz, 2H), 2.12 (s, 1H); 13C NMR 
(DMSO-d6) δ: 173.9, 147.3, 147.0, 146.2, 144.7, 138.5, 
131.9, 131.6, 128.9, 128.1, 122.9, 121.6, 120.3, 116.5, 
115.8, 115.2, 111.2, 57.2, 56.2, 45.2, 41.5, 36.5; EI– 
MS: m/z 422 [M]+(08); HREIMS: m/z: calcd for 
C24H26N2O5: 422.17, found 422.19; Anal. Calcd 
C24H26N2O5: C, 68.23; H, 6.20; N, 6.63; Found: C, 
68.25; H, 6.22; N, 6.66;

2-((3,4-Dihydroxyphenethyl)amino)- 
2-(4-Hydroxy-3-Methoxyphenyl)- 
1-(4-Methoxyphenyl) Ethanone (1f)
A pale yellow solid, yield 94%; MF = C24H25NO6; MW 
= 423.17; m.p. = 165–167°C; IR (KBr) νmax: 3512, 
3312, 2889, 1621, 1582, 1410, 1121, 1012 cm−1; 

1H NMR (DMSO-d6) δ: 6.98 (s, 1H), 6.80((1H, s), 
6.69 (d, 1H), 6.70 (d, 1H), 6.66 (d, 1H), 6.78 (d, J = 
11.0 Hz, 1H), 7.86 (d, J=10.23Hz, 2H), 7.06 (d, 
J=10.21Hz, 2H), 5.40 (s, 3H, OH), 4.43 (dd, 
J=10.34Hz, J=10.36Hz, 1H, CH), 3.81 (s, 6H, -CH3), 
3.08 (d, J=10.34Hz, 2H, CH2), 2.85 (d, J=10.36Hz, 2H, 
CH2), 2.88 (s, 2H), 2.64 (s, 2H), 2.14 (s, 1H); 13C NMR 
(DMSO-d6) δ: 201.36, 185.2, 147.3, 147.2, 145.3, 143.9, 
131.9, 131.6, 129.8, 129.1, 114.5, 122.9, 120.3, 116.5, 
115.8, 115.2, 111.2, 65.8, 56.2, 56.0, 45.2, 36.5, 32.8; 
EI–MS: m/z 360 [M]+(20), 189 (100); HREIMS: m/z: 
calcd for C24H25NO6: 423.17, found 423.10; Anal. calcd 
C19H24N2O5: C, 63.32; H, 6.71; N, 7.77; Found: C, 
63.34; H, 6.74; N, 7.75.
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1-(4-Bromophenyl)-3-((3,4- 
Dihydroxyphenethyl)amino)-3-(4-Hydroxy- 
3-Methoxyphenyl) Propan-1-one (1g)
A pale yellow solid, yield 89%; MF = C24H24BrNO5; MW = 
486.36; m.p. = 149–151°C; IR (KBr) νmax: 3612, 3314, 2891, 
1623, 1597, 1412, 1118, 1023 (-O-CH3), 758 (C-Br)cm−1; 

1H NMR (DMSO-d6) δ: 6.98 (1H, s, Ph-H), 6.80((1H, s, Ph- 
H), 6.69 (1H, d, Ph-H), 6.70 (1H, d, Ph-H), 6.66 (1H, d, Ar– 
H), 6.78 (1H, d, J = 11.0 Hz, Ph-H), 7.98 (d, J = 10.6 Hz, 2H), 
7.65 (d, J = 10.9 Hz, 2H), 5.42 (3H, s, OH), 4.13 (dd, J = 11.0 
Hz, J = 11.2 Hz, 1H, CH), 3.81 (s, 3H, -CH3), 3.09 (2H, d, J = 
11.0 Hz), 2.81 (d, J = 11.2 Hz, 2H), 2.85 (s, 2H), 2.68 (s, 2H), 
2.05 (s, 1H); 13C NMR (DMSO-d6) δ: 200.65, 147.3, 146.8, 
145.0, 144.1, 135.7, 131.5, 131.9, 131.6, 129.8, 127.6, 122.9, 
120.3, 116.5, 115.8, 115.2, 111.2, 72.9, 57.3, 56.9, 45.2, 36.5; 
131.6, 122.9, 120.3, 116.5, 115.8, 115.2, 111.2, 57.2, 45.2, 
42.5, 36.5, 26.9; EI–MS: m/z 486 [M]+(35), 189 (100); 
HREIMS: m/z: calcd for C24H24BrNO5: 486.36, found 
486.36; Anal. calcd C24H24BrNO5: C, 59.27; H, 4.97; N, 
2.88; Found: C, 59.29; H, 4.95; N, 2.87;

3-((3,4-Dihydroxyphenethyl)amino)- 
3-(4-Hydroxy-3-Methoxyphenyl)- 
1-(4-Nitrophenyl) Propan-1-one (1h)
A pale yellow solid, yield 90%; MF = C24H24N2O7; MW = 
452.46; m.p. = 132–35°C; IR (KBr) νmax: 3621, 3329, 2874, 
1699, 1628, 1591, 1410, 1109, 1039 cm−1; 1H NMR 
(DMSO-d6) δ: 6.98 (1H, s, Ph-H), 6.80 (1H, s, Ph-H), 6.69 
(1H, d, Ph-H), 6.70 (1H, d, Ph-H), 6.66 (d, 1H, Ar–H), 6.78 
(1H, d, J = 11.0 Hz), 8.34 (d, J = 11.0 Hz, 4H), 5.44 (3H, s, 
OH), 4.15 (1H, dd, J = 11.0 Hz, J = 11.2 Hz, CH), 3.81 (3H, s, 
-CH3), 3.01 (d, J = 11.0 Hz, 2H), 2.80 (2H, d, J = 11.2 Hz), 
2.85 (s, 2H), 2.68 (s, 2H), 2.07 (s, 1H); 13C NMR (DMSO-d6) 
δ: 202.11, 147.3, 147.9, 145.1, 144.6, 135.7, 131.5, 131.9, 
131.6, 129.8, 127.6, 122.9, 120.3, 116.5, 115.8, 115.2, 111.2, 
72.9, 58.1, 56.2, 45.2, 36.5; EI–MS: m/z 452[M]+(18), 189 
(100); HREIMS: m/z: calcd for C24H24N2O7: 360.17, found 
249.02; Anal. calcd C24H24N2O7: C, 63.71; H, 5.35; N, 6.19; 
Found: C, 63.70; H, 5.37; N, 6.17;

1-(4-Chlorophenyl)-3-((3,4- 
Dihydroxyphenethyl)amino)-3-(4-Hydroxy- 
3-Methoxyphenyl) Propan-1-one (1i)
A pale yellow solid, yield 87%; MF=C24H24ClNO5; MW 
= 441.90; m.p.165–168 °C; IR (KBr) νmax: 3512, 3341, 
2873, 1620, 1612, 1593, 1412, 1119, 1031, 745 cm−1; 

1H NMR (DMSO-d6) δ: 6.98 (1H, s, Ph-H), 6.80((1H, s, 
Ph-H), 6.69 (1H, d, Ph-H), 6.70 (1H, d, Ph-H), 6.66 (1H, 
d, Ar–H), 6.78 (1H, d, J =11.0 Hz, Ph-H), 7.94 (d, J =10.2 
Hz, 2H), 7.44 (d, J=10.4 Hz, 2H), 5.31 (3H, s, OH), 4.16 
(1H, dd, J = 11.0 Hz, J =11.2 Hz, CH), 3.81 (3H, s, -CH3), 
3.09 (2H, d, J=11.0 Hz), 2.85 (2H, s, CH2), 2.81 (2H, d, 
J=11.2 Hz), 2.68 (2H, s, CH2), 2.10 (1H, s, -NH); 
13C NMR (DMSO-d6) δ: 201.07, 147.3, 146.9, 145.1, 
144.8, 138.7, 134.8, 131.5, 131.9, 130.8, 128.6, 122.9, 
120.3, 116.5, 115.8, 115.2, 111.2, 72.9, 57.0, 56.1, 45.2, 
36.5; EI–MS: m/z 441 [M]+(37); HREIMS: m/z: calcd for 
C24H24ClNO5: 441.90, found 441.87; Anal. calcd C24H24 

ClNO5: C, 65.23; H, 5.47; N, 3.17; Found: C, 65.25; H, 
5.45; N, 3.16;.

3-((3,4-Dihydroxyphenethyl)amino)- 
3-(4-Hydroxy-3-Methoxyphenyl)- 
1-(p-Tolyl)propan-1-one (1j)
Yellow solid, yield 91%; MF =C25H27NO5; 
MW=421.49; m.p. = 165–167°C; IR (KBr) νmax: 3485, 
3379, 2870, 1614, 1636, 1589, 1484, 1402, 1145, 
1036 cm−1; 1H NMR (DMSO-d6) δ: 7.31 (2H,d, J=, Ph), 
6.98 (1H, s, Ph-H), 6.80((1H, s, Ph-H), 6.78 (1H, d, 
J =11.0 Hz, Ph-H), 6.72 (d, J = 11.0 Hz, 2H), 6.69 (d, 
1H), 6.70 (d, 1H), 6.66 (d, 1H), 5.40 (3H, s, OH), 4.10 
(1H, dd, J = 11.0 Hz, J = 11.2 Hz, CH), 3.81 (s, 3H), 3.09 
(d, J = 11.0 Hz, 2H), 2.86 (d, J = 11.2 Hz, 2H), 2.83 (2H, s, 
CH2), 2.68 (2H, s, CH2), 2.34 (3H, s, CH3), 2.09 (1H, s, - 
NH); 13C NMR (DMSO-d6) δ: 200.02, 147.9, 147.3, 
145.0, 144.1, 138.7, 134.8, 131.9, 131.5, 130.8, 128.6, 
122.9, 120.3, 116.5, 115.8, 115.2, 111.2, 72.9, 57.8, 56.3, 
45.2, 36.5, 21.3; EI–MS: m/z 421 [M]+(41), 189 (100); 
HREIMS: m/z: calcd for C25H27NO5: 421.49, found 
421.37; Anal. calcd C25H27NO5: C, 71.24; H, 6.46; N, 
3.32; Found: C, 71.26; H, 6.44; N, 3.30;

N-(4-Bromophenyl)- 
3-((3,4-Dihydroxyphenethyl)amino)- 
3-(4-Hydroxy-3-Methoxyphenyl) 
Propanamide (1k)
A pale yellow solid, yield 96%; MF = C24H25BrN2O5; 
MW = 501.37; m.p.141–143°C; IR (KBr) νmax: 3409, 
3361, 2865, 1646, 1618, 1581, 1482, 1404, 1140, 1032, 
702 cm−1; 1H NMR (DMSO-d6) δ: 7.71 (d, J = 11.0 Hz, 
2H), 7.56 (d, J = 11.0 Hz, 2H), 7.25 (1H, s, NH), 6.98 
(1H, s, Ph-H), 6.80 (s, 1H), 6.78 (d, J = 11.0 Hz, 1H), 
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6.70 (d, 1H), 6.69 (d, 1H), 6.66 (d, 1H), 5.45 (s, 3H, 
OH), 4.13 (dd, J = 11.0 Hz, J = 11.2 Hz, 1H), 3.81 (s, 
3H, -CH3), 3.11 (d, J = 11.0 Hz, 2H), 2.85 (s, 2H, CH2), 
2.80 (d, J = 11.2 Hz, 2H), 2.68 (s, 2H, CH2), 2.12 (s, 1H, 
-NH); 13C NMR (DMSO-d6) δ: 173.6, 147.3, 147.0, 
145.6, 144.5, 137.6, 131.9, 131.8, 131.6, 122.9, 121.9, 
121.5, 120.3, 116.5, 115.8, 115.2, 111.2, 57.2, 56.1, 45.2, 
42.5, 36.5; EI–MS: m/z 360 [M]+(20), 189 (100); 
HREIMS: m/z: calcd for C24H25BrN2O5: 501.37, found 
501.32; Anal. calcd C24H25BrN2O5: C, 57.49; H, 5.03; 
N, 5.59;; Found: C, 57.47; H, 5.05; N, 5.61;

1-(4-(Tert-Butyl)phenyl)- 
3-((3,4-Dihydroxyphenethyl)amino)- 
3-(4-Hydroxy-3-Methoxy Phenyl)propan- 
1-one (1l)
A pale yellow solid, yield 96%; MF = C28H33NO5; MW 
= 463.57; m.p. = 194–196°C; IR (KBr) νmax: 3512, 
3360, 2861, 1654, 1612, 1583, 1481, 1410, 1138, 
1030 cm−1; 1H NMR (DMSO-d6) δ: 7.37 (d, 
J=10.23Hz, 2H), 6.98 (s, 1H, Ph-H), 6.80 (s, 1H, Ph- 
H), 6.69 (d, 1H, Ph-H), 6.78 (d, J = 11.0 Hz, 1H), 6.70 
(d, J=11.23Hz, 1H), 6.66 (d, Ar–H, 1H), 6.87 (d, 
J=11.23Hz, 2H), 5.35 (s, 3H, OH), 4.17 (1H, dd, J = 
11.0 Hz, J = 11.2 Hz, CH), 3.81 (3H, s, -CH3), 3.05 
(2H, d, J = 11.0 Hz), 2.84 (d, J = 11.2 Hz, 2H,), 2.85 (s, 
2H), 2.68 (s, 2H), 2.15 (s, 1H, -NH), 1.36 (9H, s, CH3); 
13C NMR (DMSO-d6) δ: 200.02, 155.6, 147.3, 147.0, 
146.6, 144.5, 138.7, 131.5, 131.9, 130.8, 126.4, 124.9, 
122.9, 120.3, 116.5, 115.8, 115.2, 111.2, 72.9, 57.2, 
45.2, 36.5,34.3, 31.3; EI–MS: m/z 463 [M]+(24); 
HREIMS: m/z: calcd for C28H33NO5: 463.57, found 
463.55; Anal. calcd C28H33NO5: C, 72.55; H, 7.18; N, 
3.02;; Found: C, 72.52; H, 7.20; N, 3.04;.

Biological Activity
Antioxidant 2,2-Diphenyl-1-Picrylhydrazyl 
(DPPH) Scavenging Activity
DPPH antioxidant activity was screened for compounds (1a- 
l) following the methods of a previous study.46 The detailed 
method is provided in the supplementary information section.

H2O2 Scavenging Activity
H2O2 scavenging activity was screened for all compounds 
(1a-l) following the methods of a previous study.46 The 

detailed method is provided in the supplementary informa 
tion section.

Nitric Oxide (NO) Scavenging Activity
The compounds (1a-l) were screened for NO scavenging 
activity following the methods of a previous study.46 The 
detailed method is provided as a supplementary file in the 
experimental section.

2,2′-Azino-Bis(3-Ethylbenzothiazoline- 
6-Sulfonic Acid) (ABTS) Antioxidant 
Activity
The compounds (1a-l) were screened for the ABTS assay. 
The antioxidant ABTS•+ scavenging activity was checked 
with all compounds via spectrophotometric analysis 
according to the method previously described by 
Surendra kumar et al47. The detailed method is provided 
in the supplementary information section.

Inhibition of 2,2ʹ-Azobis 
(2-Amidinopropane) Dihydrochloride 
(AAPH) Assay Free-Radical Analysis
A linoleic acid peroxidation assay was used to analyse all 
synthesised compounds (1a-l) following the methods of 
a previous study.47 The detailed method is provided in the 
supplementary information section.

Anti-Tyrosinase Activity
All compounds (1a-l) were screened for anti-tyrosinase 
activities. The mushroom tyrosinase

(powder, ≥1000 unit/mg solid, EC 1.14.18.1) inhibitory 
activities were measured spectrophotometrically via 
a previously reported method.48 The detailed method is 
provided in the supplementary information section.

Cell Lines and Cell Culture
The cell lines, MCF-7 and normal cell lines were obtained 
from the American Type Cell Collection (ATCC; 
Manassas, VA, USA). The cells were cultured at 37°C 
and 5% CO2 environment to get 70–80% confluence in 
Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco®, 
Thermo Fisher Scientific, Waltham, MA, USA) with 10% 
fetal bovine serum (FBS) (Gibco®).

Cytotoxic Screening
The newly synthesised compounds (1a-l) were tested for 
cytotoxicity following the methods of a previous study.47 
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The detailed method is provided in the supplementary 
information section.

Statistical Analysis
The mean of the results was calculated based on at least 
three independent evaluations and the standard deviations 
(SD) were also calculated using Microsoft Excel.

Result and Discussion
Chemistry
The one-pot dopamine-connected vanillin multicomponent 
derivatives were synthesised using the Mannich base 
method achieved via solvent-free green chemistry. The 
final solid material was recrystallised using a suitable 
alcohol to obtain a pure product, as shown in Scheme 1. 
The optimisation of the reaction conditions is presented in 
Scheme 2. Target compounds were analysed by FTIR, 1H, 
and 13C NMR spectra. The key assignments of the com-
pounds showed significant bands at 3621–3409, 
1039–1001, 3379–3312, and 1654–1620 cm−1 in the IR 
spectrum, conforming to the –OH, –O-CH3, NH, 
and –CH2-CO- groups, respectively. 1H NMR showed 
signals at δ 5.45–5.30, 4.10–4.43, 3.11–2.69, 2.85–2.40, 
and 2.15–2.03 ppm, indicating –C-OH, CH, -CH-CH2, - 
CH-CH2, and NH protons. The 13C NMR showed peaks at 
δ 210.6–200.2, 148.0–146.6, 146.2–144.3, 144.7–140.1, 
58.1–56.0, and 56.9–53.3 ppm, which conformed to 
the –CH2-CO, –C-HO, –C-HO, –C-HO, -CH-, and –O- 
CH3 atoms. Mass spectroscopy and elemental analysis 
results were also consistent with the conformation of all 
compounds.

Biological Activity
Antioxidant activity was tested using a UV-visible spectro-
photometer for compounds (1a-l) via DPPH, H2O2, NO, 
ABTS, and AAPH assays. The compounds 1a-l were 
screened for cytotoxic activity against MCF-7 and Vero 
cell lines.

DPPH free-radical scavenging activity increased with 
an increase in concentration, with compound 1k showing 
a maximum of 100% activity at 50 µg/mL. The other 
compounds 1e, 1f, 1h, and 1i showed significant scaven-
ging activity (IC50: 14.97, 19.23, 14.56, and 15.28 µg/mL) 
compared with standard BHT (IC50: 25.17 µg/mL). The 
DPPH free-radical scavenging activity results are pre-
sented in Table 1. Scheme 3 indicates that the mechanism 
of compound 1k against the DPPH assay, which is attrib-
uted to the highly significant contributions of dopamine 
and vanillin, plays a major role in activity compared to 
standard BHT.

The dopamine-connected vanillin (1a-l) showed H2O2 

scavenging activity between 10 and 100 μg/mL. 
Compounds 1e, 1h, 1i, 1j, 1k, and 1L showed high 
activity (100% activity at 100 µg/mL) compared with 
standard BHT (82.32%) at a concentration of 100µg/ 
mL, with is IC50 values corresponding to 13.52, 11.82, 
14.00, 13.27, 10.11, and 13.55 µg/mL. The values are 
shown in Table 2.

The antioxidant mechanism could be explained based 
on its chemical structures, which comparison with isoeu-
genol derivatives.49 For example, compound 1k, which 
bears an ortho-dihydroxy, can donate an H atom from its 
phenol group to DPPH to form the resonance-stabilized 
free-radical intermediate (Scheme 3). Furthermore, inter-
mediate could react with a second DPPH to form an 
inactive anion, which on cleavage by protonation would 
give again quinone structures. Therefore, ortho- 
dihydroxylated (ie catechol) benzene ring system is gen-
erally known to be very efficient systems to delocalized 
electrons, but not for metadihydroxylated system (ie 
resorcinol).50

The NO radical reacted with Griess reagent to give 
formazon, which was measured spectrophotometrically 
by all synthesised compounds (1a-l). Compounds 1g, 1h, 
1i, 1k, and 1L were highly active (100% activity at 100 
µg/mL) against standard (83.32% activity at 100 µg/mL) 

Scheme 1 Synthesis of dopamine connected vanillin Mannich base derivatives (1a-1l).
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and other compounds. The IC50 values of 1g, 1h, 1i, 1k, 
and 1L were 11.00, 10.36, 14.15, 9.94, and 12.56 µg/mL, 
respectively. However, compound 1k was highly active, 
followed by standard compounds 1g, 1h, 1i, and 1L. The 
NO free-radical scavenging activity results are presented 
in Table 3.

Dopamine-connected vanillin (1a-l) was tested for the 
ABTS•+ assay. Compound 1e (96.21%) was highly active 
compared with trolox (85.2%). Compounds 1f, 1g, 1h, 1i, 
1j, 1k, and 1L showed >90% more activity than trolox. 
The ABTS scavenging activity results are presented in 
Table 4.

The ABTS radical assay is based on a decolourization, 
with the stable blue/green ABTS•+ directly generated 
before its reaction. All compounds are highly active com-
pounds >80 to 94% activity compared with standard tro-
lox. Mechanism ABTS of activity was represented in 
scheme 4.

The compounds (1a-l) were screened using an AAPH 
assay for the conjugated diene hydroperoxide by the oxi-
dation of linoleic acid at 234 nm, which was the formation 
of conjugated diene hydroperoxides caused by the hydro-
philic AAPH initiator. The mechanism of activity is repre-
sented in Scheme 5. This assay was performed to 
characterise the antioxidant activity of the synthesised 
compounds, with 1k being highly active at 95.28% at 
a concentration of 100 µg/mL.

The antioxidant action mechanism, mainly based on 
the inhibition of the formation of reactive O2 species 
(ROS), can chelate with metal ions, such as Cu(II) or 
Fe(II).51,52

The compound 1k was highly active against DPPH 
(IC50:11.02μg/mL), H2O2 (IC50: 10.11 μg/mL), and NO 
(IC50:9.94 μg/mL) assays whereas low active (IC50 

:12.11μg/mL) for anti-tyrosinase screening. The com-
pound 1e (IC50:9.94 μg/mL) was highly active against 

Scheme 2 Optimization of reaction condition (1a-1l).
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anti-tyrosinase activity whereas low active against 
DPPH (IC50:14.97μg/mL), H2O2 (IC50:13.52 μg/mL) 
assays.

Cytotoxicity activity 1e (IC50:0.16 μg/mL) was 
highly toxic compared with 1k (IC50: 0.51 μg/mL), 
since these activities are only present in concentration 
greater than 9.94 μg/mL, a concentration that is 100% 
toxic to MCF-7 and Vero cell lines. Therefore, the 
compounds 1e and 1k were observed highly active 
against antioxidant and anti-tyrosinase activities in cyto-
toxic concentrations for both cell lines (MCF-7 and Vero 
cell lines).

Figure 2 indicates that structure–activity relation-
ship, the compound 1k have acetamide with 4-bromo-
phenyl group, which shows that it is high antioxidant 
activity than compound 1e and 1g, whereas the com-
pound 1e has acetamide without halogen, which shows 
that it is highly anti-tyrosinase activity compared with 
compounds 1k and 1g. The compound 1g has aceto-
phenone with halogens, which shows that high toxic 
(LC50:0.30μg/mL) in MCF-7 cell line and twice the 
concentrations (LC50:15.61 μg/mL) in Vero cell line, 
whereas it is low in active of antioxidant and anti- 
tyrosinase screening.

Table 1 DPPH-Scavenging Activity of Compounds (1a-1l)

Compound Number Concentration(µg/mL)a, % Activity IC50 (µg/mL)

10 µg/mL 25 µg/mL 50 µg/mL 100 µg/mL

1a 12.20 ± 0.10 28.21 ± 0.12 33.23 ± 0.15 43.01 ±0.37 >100

1b 14.60 ± 0.03 30.62 ± 0.01 41.01 ± 0.49 58.71 ± 0.12 69.15
1c 10.36 ± 0.15 25.22 ± 0.17 32.10 ± 0.82 51.02 ± 0.09 >100

1d 13.16 ± 0.02 29.10 ± 0.09 38.03 ± 0.01 55.26 ± 0.01 80.21

1e 36.11 ± 0.03 69.12 ± 0.04 84.52 ± 0.01 100 ± 0.00 14.97
1f 26.13 ± 0.03 60.63 ± 0.22 79.03 ± 0.85 100 ± 0.00 19.23

1g 37.03 ± 0.02 69.27 ± 0.14 77.12 ± 0.02 100 ± 0.00 15.22

1h 38.00 ± 0.27 71.10 ± 0.07 79.03 ± 0.21 100 ± 0.00 14.56
1i 37.14 ± 0.22 69.04 ± 0.12 76.11 ± 0.14 100 ± 0.00 15.28

1j 26.11 ± 0.43 61.12 ± 0.23 71.01 ± 0.16 88.71 ± 0.12 21.05

1k 47.22 ± 0.34 82.21 ± 0.10 100 ± 0.00 – 11.02
1l 35.90 ± 1.08 67.10 ± 0.13 81.03 ± 0.02 100 ± 0.11 15.55

BHT 22.08 ± 0.01 54.27 ± 0.22 70.30 ± 0.34 82.31 ± 0.25 25.17

Note: aValue expressed are means ± SD of three different experiments.

Scheme 3 DPPH-scavenging mechanism of compound 1k.
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Compared with previous studies, rosmarinic acid was 
considered as competitive inhibitors53,54 by mushroom 
tyrosinase with the IC50 values of 16.8 µM, respectively, 
which is less active than compared with compound 1e. 
Another example, the ferulic acid55 was less active against 
AAPH antioxidant assay (82%) than compound 1k. The 
compound 1k was compared with L-DOPA,56 which is 
less active against DPPH (80.6%), ABTS (99.0%), and 
AAPH (67.9%) assays. Isoeugenol was also low active 
(82%) against AAPH assay49 than compound 1e. In com-

parison with vanillin, the vanillin is not active in the 
DPPH assay57 and also vanillin was low active for tyrosi-
nase inhibitory58 than compound 1e.

Dopamine was compared with compounds 1k and 1e 
against the MCF-7 and Vero cell lines, however, the dopa-
mine was absolutely inactive up to 100 μM for all cell 
lines tested.59

To estimate the anti-tyrosinase inhibitory activities, 
the synthesized dopamine-connected vanillin (1a-l) was 
exposed to a tyrosinase inhibitor using L-DOPA as 

Table 2 Hydrogen Peroxide (H2O2) Scavenging Activity of Compounds (1a-1l)

Extracts Concentration (µg/mL)a, % Activity IC50 (µg/mL)

10 25 50 100

1a 2.10 ± 0.03 12.12± 0.06 20.21 ± 0.02 43.13 ± 0.02 >100

1b 26.61± 0.14 55.25 ± 0.01 72.01 ± 0.03 84.16 ± 0.15 22.57
1c 41.37 ± 0.09 68.47 ± 0.02 84.16 ± 0.01 92.13 ± 0.03 13.18

1d 4.10 ± 0.02 16.29 ± 0.35 23.11 ± 0.11 36.11 ± 0.03 >100

1e 42.01 ± 0.02 69.12 ± 0.04 84.52 ± 0.32 100 ± 0.00 13.52
1f 38.10 ± 0.16 61.62 ± 0.23 79.01 ± 0.16 92.71 ± 0.12 15.82

1g 40.17 ± 0.69 67.22 ± 0.19 74.12 ± 0.22 91.02 ± 0.21 14.40

1h 46.00 ± 1.27 74.10 ± 0.07 89.03 ± 0.21 100 ± 0.00 11.82
1i 41.04 ± 0.32 68.12 ± 0.12 82.52 ± 0.14 100 ± 0.00 14.00

1j 42.10 ± 0.13 71.62 ± 0.23 82.01 ± 0.16 100 ± 0.00 13.27

1k 51.02 ± 0.82 78.22 ± 0.10 85.00 ± 0.01 100 ± 0.00 10.11
1l 41.09 ± 0.11 71.10 ± 0.07 83.03 ± 0.21 100 ± 0.00 13.55

BHT 29.02 ± 0.03 59.01 ± 1.02 68.51 ± 0.02 82.17 ± 0.77 21.52

Note: aValue expressed are means ± SD of three different experiments.

Table 3 NO Scavenging Activity of Compounds (1a-1l)

Extracts Concentration (µg/mL)a, % Activity IC50 (µg/mL)

10 25 50 100

1a 20.98 ± 0.02 40.29 ± 0.22 59.13 ± 0.07 74.39 ± 0.14 35.75

1b 27.60 ± 0.21 52.51 ± 0.21 67.16 ± 0.10 78.12 ± 0.16 24.90
1c 32.30 ± 0.55 61.01 ± 0.03 71.12 ± 0.64 81.11 ± 0.18 19.21

1d 21.13 ± 0.54 41.12 ± 0.05 67.09 ± 0.11 77.10 ± 0.12 31.53

1e 46.42 ± 0.01 79.12 ± 0.02 86.03 ± 0.01 96.20 ± 0.02 10.58
1f 41.00 ± 0.21 71.62 ± 0.20 81.23 ± 0.16 90.06 ± 0.10 12.75

1g 47.07 ± 0.09 79.22 ± 0.16 86.12 ± 0.22 100 ± 0.00 11.00

1h 49.70 ± 1.07 80.10 ± 0.04 91.13 ± 0.20 100 ± 0.00 10.36
1i 39.48 ± 0.82 69.12 ± 0.10 84.52 ± 0.14 100 ± 0.00 14.15

1j 44.19 ± 0.11 75.62 ± 0.18 86.07 ± 0.16 92.21 ± 0.19 11.13

1k 52.22 ± 0.02 86.21 ± 0.01 100 ± 0.00 – 9.94
1l 43.07 ± 0.46 73.10 ± 0.19 92.03 ± 0.21 100 ± 0.00 12.56

BHT 28.03 ± 0.02 53.16 ± 0.02 67.65 ±0.01 83.32 ± 0.51 23.58

Note: aValue expressed are means ± SD of three different experiments.
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a substrate. Kojic acid, which is used as a skin- 
whitening ingredient, was used as a reference. The 
inhibitory effects of the compounds (1a-l) are pre-
sented in Table 5. Compounds 1e and 1k bearing 
a dopamine-connected vanillin substituent showed bet-
ter inhibitory activity with IC50 values of 10.63 and 
12.11µg/mL, respectively, compared to other com-
pounds and kojic acid with an IC50 value of 21.52 
µg/mL.

Inhibition of dopamine-connected vanillin was tested 
using L-DOPA as a substrate. Kojic acid is used as 
a basic skin-whitening element, and was used as 
a reference compound in this study. The carboxyl and 
NH groups were present in compounds 1c-l and kojic 
acid, which play a major role in this mechanism.60 

Compound 1e showed the highest inhibition, among 

them, the mechanism of inhibition was represented in 
Scheme 6.

The kinetic behavior of the most active compound 1e 
was studied with respect to the oxidation of L-DOPA by 
mushroom tyrosinase at different concentrations. As 
shown in Figure 3, Lineweaver -Burk plots of 1/V versus 
1/[S] resulted in a family of straight lines with the same 
intercept on the vertical axis. The plots obtained indicated 
that compound 1e is a competitive inhibitor and that its 
inhibitory activity decreases with increasing substrate 
concentration.

Antioxidant agents can form free-radical scavengers 
and inhibit enzymes, which are related to the design 
of chemical structures.61–63 Target compounds (1a-l) 
can act as hydrogen donors, providing atoms 
directly to the radicals and preventing the formation 
of toxic OH radicals to the cell membrane 
peroxidation.64

Table 4 ABTS•+ and AAPH Activities of Compounds (1a-1l)

Compounds Percentage of Activity (%)a

ABTS•+ AAPH

1a 87.60 ± 0.08 81.21± 0.11

1b 86.21 ± 0.32 80.21 ± 0.21
1c 81.23 ± 0.12 85.22 ± 0.34

1d 82.31 ± 0.53 80.12 ± 0.42

1e 96.21 ± 0.59 91.02 ± 0.01
1f 95.21 ± 0.19 92.32 ± 0.10

1g 93.25 ± 0.31 94.12 ± 0.42

1h 92.32 ± 0.36 92.01 ± 0.04
1i 91.51 ± 0.20 92.35 ± 0.15

1j 90.28 ± 0.10 94.29 ± 0.95

1k 94.28 ± 0.99 95.28 ± 0.25
1l 92.14 ± 0.17 92.19 ± 0.05

Trolox 85.28 ± 0.97 62.39 ± 0.35

Note: aValue expressed are means ± SD of three different experiments.

Scheme 4 Reaction mechanism of ABTS•+ radical.

Scheme 5 Mechanism of lipid peroxidation and its inhibition 1k.
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The compounds 1f, 1g, and 1h were at close concen-
tration range of (0.30 to 0.67 µm/mL) in MCF-7 cells with 
different activity such as DPPH (15.22 to 19.23, µm/mL), 
NO (10.36 to 12.75 µm/mL), H2O2 (11.82 to 14.40 µm/ 
mL) assays, and anti-tyrosinase activity (25.47 to 36.59, 
µm/mL), whereas that are cytotoxic in VERO cells only at 
twice the concentrations.

The compound 1j, and 1l were equipotent activity 
against H2O2 antioxidant assay (13.27, and 13.55 µm/ 
mL), closely related activity against NO antioxidant 
assay (11.13, and 12.56 µm/mL), and the closely related 

against anti-tyrosinase activity (24.76, and 28.63µm/mL), 
whereas that are cytotoxic in MCF-7 cell line (9.36, 4.49 
µm/mL), and Vero cells (26.18, and 28.11µm/mL) concen-
trations, respectively.

Further the activity of all effective compounds were 
tested against the normal cell line (VERO cell line) and it 
was concluded that most of compounds were obtained 
cytotoxic at twice the concentrations to normal cell com-
pared than MCF-7 cell line.

The cytotoxic results of each test are reported as the 
growth of treated cells in Table 6. As a result, 

Figure 2 Structure–activity relationship and comparison of highly active compounds.

Table 5 The Compounds (1a-1l) Tyrosinase Screening

Compound Concentration (µg/mL)a, % Activity IC50 (µg/mL)

10 25 50 100

1a 0.0 + 0.00 3.12 ± 0.17 17.81 ± 0.19 36.74 ± 0.98 >100

1b 0.0 + 0.00 1.05 ± 0.26 12.84 ± 0. 12 26.52 ± 0.98 >100
1c 12.40 ± 0.14 28.70 ± 0.31 42.84 ± 0. 65 58.52 ± 0.57 68.09

1d 06.71 ± 0.19 18.70 ± 0.20 27.84 ± 0.43 48.52 ± 0.18 >100

1e 46.33 ± 0.03 78.63 ± 0.43 86.81 ± 0.29 96.02 ± 1.18 10.63
1f 21.05 ± 0.16 40.75 ± 0.66 59.84 ± 0.19 78.52 ± 0.63 33.59

1g 23.71 ± 0.44 44.75 ± 0.54 51.84 ± 0.13 72.52 ± 0.17 36.82

1h 27.79 ± 0.17 49.75 ± 0.47 63.84 ± 0.24 83.52 ± 0.05 25.47
1i 22.95 ± 0.48 42.75 ± 0.38 61.84 ± 0.29 80.52 ± 0.29 30.86

1j 28.55 ± 0.21 49.75 ± 0.23 64.84 ± 0.34 84.52 ± 0.88 24.76

1k 41.85 ± 0.17 74.75 ± 0.07 81.84 ± 0.10 92.02 ± 0.31 12.11
1l 22.99 ± 1.87 42.68 ± 0.87 69.15 ± 0.14 81.10 ± 0.12 28.63

Kojic acid 31.01 ± 0.98 55.60 ± 0.02 68.12 ± 0.10 84.12 ± 0.93 21.52

Note: aValue expressed are means ± SD of three different experiments.
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among the synthesized compounds evaluated, com-
pound 1e, 1f, and 1g were highest cytotoxic against 
MCF-7 cell line and low active against Vero cell line 
than that of doxorubicin. Moreover, the selectivity 
index (SI) of the compounds 1e, 1k, and 1g (Vero 
and MCF-7) was equipotent than that of doxorubicin 
with SI values. The IC50 values and selectivity index 
(SI) that obtained from the MTT assay are presented in 
Table 6.

Conclusion
New dopamine-connected vanillin multicomponent deri-
vatives (1a-l) were synthesised via the grindstone 
method in high yields (85–92%) via a one-pot 
Mannich base without using catalysis. This method is 
inexpensive and produces a high yield. We synthesised 
12 dopamine-connected vanillin derivatives and 
evaluated their anti-tyrosinase and antioxidant activities 
as well as their cytotoxicity. Compound 1k was 
highly active in DPPH, H2O2 scavenging, and NO 
scavenging. On the other hand, compounds 1e and 1k 
were highly active in ABTS•+ and AAPH assays com-
pared with the trolox standard. Compounds 1e and 1k 
significantly inhibited tyrosinase activity compared with 
standard kojic acid, and compound 1e (GI50 = 0.01 µM) 
showed higher cytotoxicity in the MCF-7 
cancer cell line. Therefore, lead compounds 1e and 1k 
are the new class of most effective antioxidant and 
anti-tyrosinase agents, and further development is 
required.

Scheme 6 The binuclear active site of tyrosinase with reversible competitive 
binding of compound 1e.

Figure 3 Inhibition of compound 1e – Lineweaver-Burk plot.
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