Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 16

Oronasal versus Nasal Masks for Non-Invasive Ventilation in COPD: A Randomized Crossover Trial

Authors Majorski DS, Callegari JC, Schwarz SB, Magnet FS, Majorski R, Storre JH, Schmoor C, Windisch W

Received 10 December 2020

Accepted for publication 11 March 2021

Published 26 March 2021 Volume 2021:16 Pages 771—781

DOI https://doi.org/10.2147/COPD.S289755

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell


Daniel S Majorski,1 Jens C Callegari,1 Sarah B Schwarz,1 Friederike S Magnet,1 Rodion Majorski,2 Jan H Storre,3,4 Claudia Schmoor,5 Wolfram Windisch1

1Cologne Merheim Hospital, Department of Pneumology, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Cologne, Germany; 2Department of Neurology and Neurophysiology, Helios Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany; 3Praxis Pneumologie Solln, Munich, Germany; 4Department of Pneumology, University Medical Hospital, Freiburg, Germany; 5Clinical Trials Unit, Medical Center – University Medical Hospital, Freiburg, Germany

Correspondence: Wolfram Windisch
Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Faculty of Health/School of Medicine, Ostmerheimer Strasse 200, Köln, D-51109, Germany
Email [email protected]

Purpose: The impact of oronasal and nasal masks on the quality of nocturnal non-invasive ventilation (NIV) needs to be clarified. This trial was designed to compare the impact of oronasal and nasal masks on the objective quality and subjective acceptance of nocturnal NIV in COPD-patients.
Patients and Methods: In a randomized crossover trial, 30 COPD-patients with well-established high-intensity NIV (mean inspiratory/expiratory positive airway pressure 26± 3/5± 1 cmH2O, mean respiratory back-up rate 17± 1/min) were ventilated for two consecutive nights on oronasal and nasal masks, respectively.
Results: Full polysomnography, nocturnal blood gas measurements, and subjective assessments were performed. There was a tendency towards improved sleep efficiency (primary outcome) when an oronasal mask was worn (+9.9%; 95% CI:-0.2%-20.0%; P=0.054). Sleep stages 3/4 were favored by the oronasal mask (+12.7%; 95% CI: 6.0%-19.3%; P=< 0.001). Subjective assessments were comparable with the exception of items related to leakage (P< 0.05 in favor of nasal masks). The mean transcutaneous PCO2 value for oronasal masks (47.7± 7.4 mmHg) was comparable to that of nasal masks (48.9± 6.6 mmHg) (P=0.11). There was considerable diversity amongst individual patients in terms of sleep quality and gas exchange following mask exchange. Subjective mask preference was not associated with sleep quality, but with nocturnal dyspnea. Over 40% of patients subsequently switched to the mask that they were not previously accustomed to.
Conclusion: In general, oronasal and nasal masks are each similarly capable of successfully delivering NIV in COPD-patients. However, the individual response to different interfaces is extremely heterogeneous, while subjective mask preference is independent from objective measures, but associated with dyspnea.
Trial Registration: German Clinical Trials Registry (DRKS00007741).

Keywords: respiratory insufficiency, sleep, masks, dyspnea

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]