Back to Journals » OncoTargets and Therapy » Volume 9

Modulation of expression of the nuclear receptor NR0B2 (small heterodimer partner 1) and its impact on proliferation of renal carcinoma cells

Authors Prestin K, Olbert M, Hussner J, Isenegger T, Gliesche D, Böttcher K, Zimmermann U, Meyer zu Schwabedissen H

Received 22 February 2016

Accepted for publication 10 June 2016

Published 8 August 2016 Volume 2016:9 Pages 4867—4878


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Faris Farassati

Katharina Prestin,1,* Maria Olbert,2,* Janine Hussner,1 Tamara L Isenegger,1 Daniel G Gliesche,1 Kerstin Böttcher,2 Uwe Zimmermann,3 Henriette E Meyer zu Schwabedissen1

1Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland; 2Center of Drug Absorption and Transport, Institute of Pharmacology, 3Department of Urology, University Medicine Greifswald, Greifswald, Germany

*These authors contributed equally to this work

Abstract: Mammalian nuclear receptors (NRs) are transcription factors regulating the expression of target genes that play an important role in drug metabolism, transport, and cellular signaling pathways. The orphan and structurally unique receptor small heterodimer partner 1 (syn NR0B2) is not only known for its modulation of drug response, but has also been reported to be involved in hepatocellular carcinogenesis. Indeed, previous studies show that NR0B2 is downregulated in human hepatocellular carcinoma, suggesting that NR0B2 acts as a tumor suppressor via inhibition of cellular growth and activation of apoptosis in this tumor entity. The aim of our study was to elucidate whether NR0B2 may also play a role in other tumor entities. Comparing NR0B2 expression in renal cell carcinoma and adjacent nonmalignant transformed tissue revealed significant downregulation in vivo. Additionally, the impact of heterologous expression of NR0B2 on cell cycle progression and proliferation in cells of renal origin was characterized. Monitoring fluorescence intensity of resazurin turnover in RCC-EW cells revealed no significant differences in metabolic activity in the presence of NR0B2. However, there was a significant decrease of cellular proliferation in cells overexpressing this NR, and NR0B2 was more efficient than currently used antiproliferative agents. Furthermore, flow cytometry analysis showed that heterologous overexpression of NR0B2 significantly reduced the amount of cells passing the G1 phase, while on the other hand, more cells in S/G2 phase were detected. Taken together, our data suggest that downregulation of NR0B2 may also play a role in renal cell carcinoma development and progression.

Keywords: small heterodimer partner, SHP1, NR0B2, nuclear receptor, kidney cancer, proliferation

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]