Back to Journals » OncoTargets and Therapy » Volume 14

LncRNA WT1-AS/miR-494-3p Regulates Cell Proliferation, Apoptosis, Migration and Invasion via PTEN/PI3K/AKT Signaling Pathway in Non-Small Cell Lung Cancer

Authors Wu C, Yang J, Li R, Lin X, Wu J, Wu J

Received 21 August 2020

Accepted for publication 4 December 2020

Published 9 February 2021 Volume 2021:14 Pages 891—904

DOI https://doi.org/10.2147/OTT.S278233

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 5

Editor who approved publication: Prof. Dr. Takuya Aoki


Chaohui Wu, Jiansheng Yang, Rongbin Li, Xianbin Lin, Jiayun Wu, Jingyang Wu

Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, People’s Republic of China

Correspondence: Chaohui Wu
Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, People’s Republic of China
Email wzhaohui333@163.com

Background: Non-small cell lung cancer (NSCLC) is one of the most common malignancies with the highest morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) are recently recognized as noteworthy regulators of different tumors, counting NSCLC. However, the biological functions and regulatory mechanism of lncRNA WT1-AS in NSCLC progression still stay uninvestigated.
Methods: WT1-AS and miR-494-3p levels in NSCLC cell lines were detected by real-time quantitative polymerase chain reaction (RT-qPCR). In the current study, the regulatory effects of WT1-AS/miR-494-3p axis on cellular behaviors of NSCLC cell lines (A549 and NCI-H1975) were evaluated by a variety of methods. Cell counting kit-8 (CCK-8) and EDU assays were adopted to assess NSCLC cell proliferation. Tunnel staining and flow cytometry assay were applied to determine cell apoptosis and cell cycle distribution. Besides, cell migration and invasion abilities were analyzed by performing wound healing and transwell assays. Meanwhile, the levels of key proteins related to NSCLC cell apoptosis and PTEN/PI3K/AKT pathway were examined using Western blot assay. In addition, luciferase reporter assays were used to determine the interaction between WT1-AS and miR-494-3p or miR-494-3p and PTEN.
Results: Visibly downregulated WT1-AS in NSCLC cell lines was obtained from Broad Institute Cancer Cell Line Encyclopedia (CCLE) database and further verified by performing RT-qPCR. Besides, miR-494-3p was the downstream target gene of WT1-AS and obviously upregulated miR-494-3p in NSCLC cell lines was confirmed. WT1-AS overexpression suppressed cell proliferation, migration and invasion abilities while enhanced cell apoptosis of A549 and NCI-H1975 cells. Furthermore, upregulation of miR-494-3p distinctly reversed these inhibitory effects of WT1-AS overexpression on the tumorigenesis and progression of NSCLC. In addition, WT1-AS promoted PTEN expression and thereby inhibited activation of PI3K/AKT pathway by sponging miR-494-3p.
Conclusion: To conclude, lncRNA WT1-AS impeded cell proliferation, migration, invasion but accelerated cell apoptosis via negatively regulating miR-494-3p to mediate PTEN/PI3K/AKT pathway in NSCLC.

Keywords: lncRNA WT1-AS, miR-494-3p, PTEN/PI3K/AKT, tumor progression, non-small cell lung cancer; NSCLC

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]