Back to Journals » Infection and Drug Resistance » Volume 10

Investigating a rare methicillin-resistant Staphylococcus aureus strain: first description of genome sequencing and molecular characterization of CC15-MRSA

Authors Senok AC, Somily AM, Slickers P, Raji MA, Garaween G, Shibl A, Monecke S, Ehricht R

Received 3 July 2017

Accepted for publication 29 August 2017

Published 4 October 2017 Volume 2017:10 Pages 307—315


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Professor Suresh Antony

Abiola C Senok,1 Ali M Somily,2 Peter Slickers,3,4 Muhabat A Raji,5 Ghada Garaween,5 Atef Shibl,5 Stefan Monecke,3,4,6 Ralf Ehricht3,4

1Department of Basic Science, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; 2Department of Pathology and Laboratory Medicine, College of Medicine, King Khalid University Hospital and King Saud University, Riyadh, Saudi Arabia; 3Alere Technologies GmbH, Jena, Germany, 4InfectoGnostics Research Campus, Jena, Germany; 5Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; 6Institute for Medical Microbiology and Hygiene (IMMH), Technische Universität Dresden, Dresden, Germany

Purpose: Methicillin resistant Staphylococcus aureus CC15 strains (CC15-MRSA) have only been sporadically described in literature. This study was carried out to describe the genetic make-up for this rare MRSA strain.
Methods: Four CC15-MRSA isolates collected in Riyadh, Saudi Arabia, between 2013 and 2014 were studied. Two isolates were from clinical infection and 2 from retail meat products. Whole genome sequencing was carried out using Illumina HiSeq2500 genome analyzer.
Results: All the CC15-MRSA isolates had the multilocus sequence typing profile ST1535, 13–13-1–1-81-11-13, which is a single locus variant of ST15. Of the 6 contigs related to the SCC element, one comprised a recombinase gene ccrAA, ccrC-PM1, fusC and a helicase, another one included mvaS, dru, mecA and 1 had yobV and Q4LAG7. The SCC element had 5 transposase genes, namely 3 identical paralogs of tnpIS431 and 2 identical paralogs of tnpIS256. Two identical copies of a tnpIS256-based insertion element flank the aacA-aphD gene. Two copies of this insertion element were present with 1 located in the SCC element and another inserted into the sasC gene. A short 3 kb region, which lacks any bacteriophage structural genes and site-specific DNA integrase, was inserted into the hlb gene. The hsdM and the 5’-part of the hsdS gene are replaced by a copy of the hsdM/hsdS paralogs from nSab giving rise to a new chimeric paralog of hsdS in vSaa.
Conclusion: CC15-MRSA shows a novel SCCmecV/SCCfus composite element. Its variant of hsdM/hsdS probably facilitated uptake of foreign mobile genetic elements that promoted emergence of CC15-MRSA. Close surveillance is needed to monitor spread and emergence of further CC15 MRSA strains.

Keywords: whole genome sequencing, MRSA, MLST, clonal complex, SCCmec, Saudi Arabia

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]