Back to Journals » Drug Design, Development and Therapy » Volume 13

Delivery of folic acid-modified liposomal curcumin for targeted cervical carcinoma therapy

Authors Wang WY, Cao YX, Zhou X, Wei B

Received 18 February 2019

Accepted for publication 19 April 2019

Published 4 July 2019 Volume 2019:13 Pages 2205—2213

DOI https://doi.org/10.2147/DDDT.S205787

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Amy Norman

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Cristiana Tanase


Wen-Yan Wang,1,2 Yun-Xia Cao,2 Xiao Zhou,3 Bing Wei1

1Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China; 2Teaching and Research Group of Obstetrics and Gynecology, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China; 3Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China

Introduction: In this study, novel folic acid (FA)-modified curcumin (CUR) liposomes (LPs) were developed and evaluated for their antitumor activity in vitro and in vivo.
Methods: Characterization of the LPs, including transmission electron microscopy, morphology, particle size, and zeta potential studies, was carried out. Drug entrapment efficiency, drug-loading capacity, and release properties in vitro were tested. The in vitro growth inhibition activity, cellular uptake efficiency, and cell apoptosis of FA-modified CUR LPs were also investigated by a cervical cancer HeLa cell model.
Results: The optimized distearoyl-l-a-phosphatidylethanolamine (DSPE)-PEG2000-FA-LPs/CUR formed spherical vesicles of nanometer sizes and had particle sizes of 112.3±4.6 nm, polydispersity index of 0.19±0.03, and zeta potential of −15.3±1.4 mV. In addition, the EE% and DL% of (DSPE)-PEG2000-FA-LPs/CUR were 87.6% and 7.9%, respectively. Compared with the free drug, FA-modified CUR LPs had sustained-release properties in vitro. In vivo, a strong green fluorescence was observed in the cytoplasmic region after incubation of (DSPE)-PEG2000-FA-LPs/CUR for 2 hrs.
Conclusion: (DSPE)-PEG2000-FA-LPs/CUR showed a superior antiproliferative effect on HeLa cells and had a better antitumor effect in vivo than the non-modified LPs. These results indicated that (DSPE)-PEG2000-FA-LPs/CUR was a promising candidate for antitumor drug delivery.

Keywords: curcumin, folic acid, liposome, release, cell uptake, antiproliferative, antitumor study, HeLa


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]