Back to Journals » Infection and Drug Resistance » Volume 13

Cryptococcus neoformans/gattii Species Complexes from Pre-HIV Pandemic Era Contain Unusually High Rate of Non-Wild-Type Isolates for Amphotericin B

Authors Pharkjaksu S, Chongtrakool P, Chayakulkeeree M, Mitrpant C, Angkasekwinai P, Bennett JE, Kwon-Chung KJ, Ngamskulrungroj P

Received 30 October 2019

Accepted for publication 11 February 2020

Published 26 February 2020 Volume 2020:13 Pages 673—681

DOI https://doi.org/10.2147/IDR.S235473

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Sahil Khanna


Sujiraphong Pharkjaksu, 1 Piriyaporn Chongtrakool, 1 Methee Chayakulkeeree, 2 Chalermchai Mitrpant, 3 Pornpimon Angkasekwinai, 4 John E Bennett, 5 Kyung J Kwon-Chung, 5 Popchai Ngamskulrungroj 1

1Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; 2Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; 3Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; 4Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand; 5Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Correspondence: Popchai Ngamskulrungroj
Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkok Noi, Bangkok 10700, Thailand
Tel +66 2 419 7053
Fax +66 2 418 4148
Email popchai.nga@mahidol.ac.th

Introduction: The Cryptococcus neoformans/gattii species complexes are a leading cause of fatality among HIV-infected patients. Despite the unavailability of clinical breakpoints (CBPs) for antifungal agents, epidemiological cutoff values (ECVs) were recently proposed, and non-wild-type isolates for polyenes and azoles are being increasingly reported. However, the distributions of the susceptibility patterns for pre-HIV-era isolates have not been studied.
Methods: We determined the in vitro antifungal susceptibility patterns of 233 Cryptococcus isolates, collected at the National Institutes of Health, USA, in pre-HIV pandemic era, to study minimum inhibitory concentrations (MICs) to the important drugs for cryptococcosis and to compare the results with strain genotypes. Amphotericin B susceptibility was compared to published ECV of C. neoformans.
Results: The 233 Cryptococcus strains consisted of 89.7% C. neoformans species complex and 10.3% C. gattii species complex. Most were from clinical sources (189, 81.1%), and the major molecular type was VNI (146, 62.7%). The highest geometric mean (GM) was observed for fluconazole (GM = 0.96 μg/mL) while the lowest was for itraconazole (GM = 0.10 μg/mL). MICs to fluconazole in C. gattii species complex were significantly higher than C. neoformans species complex (p < 0.001). Moreover, C. neoformans/VNI strains showed significantly higher MICs than others such as C. neoformans/VNII to fluconazole (p < 0.0001) and C. deneoformans/VNIV to amphotericin B (p = 0.022) and fluconazole (p = 0.008). In our collection of 167 clinical C. neoformans species complex strains, 85 (50.9%), 24 (14.4%), and 3 (1.8%) strains had an amphotericin B (AMB)-MIC of 1, 2, and 4 μg/mL, respectively. The high percentage (66.9%, 79/118 strains) of non-wild-type clinical C. neoformans VNI strains, using an AMB-ECV of 0.5 μg/mL, was found. Moreover, 25 of 28 (89.3%) C. neoformans VNI strains from environmental and veterinary sources also had AMB-MICs above 0.5 μg/mL. In general, there was no significant difference in GM AMB-MIC of the clinical strains isolated from patients with (35 patients) and without (78 patients) prior AMB treatment (0.85 vs 0.76; p = 0.624). GM MIC of the environmental strains was not significantly different from that of the prior AMB-treatment strains (0.98 vs 0.76, p = 0.159) and the post-AMB-treatment strains (0.98 vs 0.85, p = 0.488).
Conclusion: The high rate of non-wild-type among these otherwise naive isolates to amphotericin B is unexpected. Confirmation with more strains from a later era is needed.

Keywords: Cryptococcus neoformans/gattii species complexes, pre-HIV pandemic, genotype, antifungal susceptibility, epidemiologic cutoff values, non-wild type


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]