Back to Journals » Drug Design, Development and Therapy » Volume 10

Zolav®: a new antibiotic for the treatment of acne

Authors Dinant A, Boulos R

Received 15 February 2016

Accepted for publication 25 February 2016

Published 22 March 2016 Volume 2016:10 Pages 1235—1242

DOI https://doi.org/10.2147/DDDT.S106462

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr ZhiQiang Yin

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Wei Duan


Alexa Dinant,1 Ramiz A Boulos2,3

1AXD Pty Ltd, Semaphore Park, 2School of Chemical and Physical Sciences, Flinders University, Bedford Park, 3Boulos & Cooper Pharmaceuticals Pty Ltd, Port Adelaide, SA, Australia

Background: Acne is a prominent skin condition affecting >80% of teenagers and young adults and ~650 million people globally. Isotretinoin, a vitamin A derivative, is currently the standard of care for treatment. However, it has a well-established teratogenic activity, a reason for the development of novel and low-risk treatment options for acne.
Objective: To investigate the effectiveness of Zolav®, a novel antibiotic as a treatment for acne vulgaris.
Materials and methods: Minimum inhibitory concentration of Zolav® against Propionibacterium acnes was determined by following a standard protocol using Mueller-Hinton broth and serial dilutions in a 96-well plate. Cytotoxicity effects on human umbilical vein endothelial cells and lung cells in the presence of Zolav® were investigated by determining the growth inhibition (GI50) concentration, total growth inhibition concentration, and the lethal concentration of 50% (LC50). The tryptophan auxotrophic mutant of Escherichia coli strain, WP2 uvrA (ATCC 49979), was used for the AMES assay with the addition of Zolav® tested for its ability to reverse the mutation and induce bacterial growth. The in vivo effectiveness of Zolav® was tested in a P. acnes mouse intradermal model where the skin at the infection site was removed, homogenized, and subjected to colony-forming unit (CFU) counts.
Results: Susceptibility testing of Zolav® against P. acnes showed a minimum inhibitory concentration of 2 µg/mL against three strains with no cytotoxicity and no mutagenicity observed at the highest concentrations tested, 30 µM and 1,500 µg/plate, respectively. The use of Zolav® at a concentration of 50 µg/mL (q8h) elicited a two-log difference in CFU/g between the treatment group and the control.
Conclusion:
This study demonstrates the potential of Zolav® as a novel treatment for acne vulgaris.

Keywords:
acne, MscL, Zolav®, benzoyl peroxide, isotretinoin, antibiotic resistance

Corrigendum for this paper has been published

 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]