Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 15

Transition from Restrictive to Obstructive Lung Function Impairment During Treatment and Follow-Up of Active Tuberculosis

Authors Allwood BW, Maasdorp E, Kim GJ, Cooper CB, Goldin J, van Zyl-Smit RN, Bateman ED, Dawson R

Received 16 December 2019

Accepted for publication 10 March 2020

Published 11 May 2020 Volume 2020:15 Pages 1039—1047


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell

Brian W Allwood,1,2 Elizna Maasdorp,3 Grace J Kim,4,5 Christopher B Cooper,6 Jonathan Goldin,4 Richard N van Zyl-Smit,2 Eric D Bateman,2 Rodney Dawson2

1Division of Pulmonology, Department of Medicine, Stellenbosch University, Cape Town, South Africa; 2University of Cape Town Lung Institute, and Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa; 3DST/NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; 4Center for Computer Visions and Imaging Biomarkers, Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; 5Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA; 6Departments of Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA

Correspondence: Brian W Allwood
Division of Pulmonology, Department of Medicine, Stellenbosch University, Rm 3013 3rd Floor; Clinical Building; Francie Van Zijl Drive; Medical School, Tygerberg 7505, South Africa

Background: Pulmonary tuberculosis (PTB) is associated with many forms of chronic lung disease including the development of chronic airflow obstruction (AFO). However, the nature, evolution and mechanisms responsible for the AFO after PTB are poorly understood. The aim of this study was to examine the progression of changes in lung physiology in patients treated for PTB.
Methods: Immunocompetent, previously healthy, adult patients receiving ambulatory treatment for a first episode of tuberculosis were prospectively followed up with serial lung physiology and quantitative computed tomography (CT) lung scans performed at diagnosis of tuberculosis, 2, 6, 12 and 18 months during and after the completion of treatment.
Results: Forty-nine patients (median age 26 years; 37.2% males) were included, and 43 were studied. During treatment, lung volumes improved and CT fibrosis scores decreased, but features of AFO and gas trapping emerged, while reduced diffusing capacity (DLco) seen in a majority of patients persisted. Significant increases in total lung capacity (TLC) by plethysmography were seen in the year following treatment completion (median change 5.9% pred., P< 0.01) and were driven by large increases in residual volume (RV) (median change +19%pred., P< 0.01) but not inspiratory capacity (IC; P=0.41). The change in RV/TLC correlated with significant progression of radiological gas trapping after treatment (P=0.04) but not with emphysema scores. One year after completing treatment, 18.6% of patients had residual restriction (total lung capacity, TLC < 80%pred), 16.3% had AFO, 32.6% had gas trapping (RV/TLC> 45%), and 78.6% had reduced DLco.
Conclusion: Simple spirometry alone does not fully reveal the residual respiratory impairments resulting after a first episode of PTB. Changes in physiology evolve after treatment completion, and these findings when taken together, suggest emergence of gas trapping after treatment likely caused by progression of small airway pathology during the healing process.

Keywords: tuberculosis, post-tuberculosis, chronic obstructive pulmonary disease, lung function, computed tomography, airflow obstruction

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]