Back to Journals » International Journal of Nanomedicine » Volume 6

Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

Authors Talaie F, Azizi E, Dinarvand R, Atyabi F

Published 14 September 2011 Volume 2011:6 Pages 1963—1975


Review by Single-blind

Peer reviewer comments 4

Fatemeh Talaei1, Ebrahim Azizi2, Rassoul Dinarvand3, Fatemeh Atyabi3
1Novel Drug Delivery Systems Lab, 2Molecular Research Lab, Department of Pharmacology and Toxicology, 3Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Abstract: Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo.

Keywords: thiolated chitosan, nanoparticles, doxorubicin, antisense oligonucleotide, epidermal growth factor receptor, T47D breast cancer cells, controlled release

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study

Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN

International Journal of Nanomedicine 2012, 7:1851-1863

Published Date: 11 April 2012

Poly (ε-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea

Bakhshandeh H, Soleimani M, Shah Hosseini S, Hashemi H, Shabani I, Shafiee A, Behesht Nejad AH, Erfan M, Dinarvand R, Atyabi F

International Journal of Nanomedicine 2011, 6:1509-1515

Published Date: 14 July 2011

Polyanionic carbohydrate doxorubicin–dextran nanocomplex as a delivery system for anticancer drugs: in vitro analysis and evaluations

Yousefpour P, Atyabi F, Vasheghani Farahani E, Sakhtianchi R, Dinarvand R

International Journal of Nanomedicine 2011, 6:1487-1496

Published Date: 11 July 2011

Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube

Sobhani Z, Dinarvand R, Atyabi F, Ghahremani M, Adeli M

International Journal of Nanomedicine 2011, 6:705-719

Published Date: 5 April 2011

Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation

Shahrooz Saremi, Fatemeh Atyabi, Seyedeh Parinaz Akhlaghi, et al

International Journal of Nanomedicine 2011, 6:119-128

Published Date: 12 January 2011

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Nimodipine-loaded mixed micelles: formulation, compatibility, pharmacokinetics, and vascular irritability study

Song X, Jiang Y, Ren CJ, Sun X, Zhang Q, Gong T, Zhang ZR

International Journal of Nanomedicine 2012, 7:3689-3699

Published Date: 13 July 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010