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Abstract: Thiolated chitosan has high transfection and mucoadhesive properties. 

We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl 

cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug deliv-

ery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense 

oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gela-

tion process. Particle characterization, drug loading, and drug release were evaluated. To 

verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were 

performed. EGFR gene and protein expression was analyzed by real time quantitative poly-

merase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% 

for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed 

that ASOND and DOX were completely released from chitosan-based particles while a 

lower and more sustained release of only 22% ± 8% was measured for thiolated particles. 

In a cytosol simulated release medium/reducing environment, such as found intracellularly, 

polymer-based nanoparticles dissociated, liberating approximately 50% of both active sub-

stances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high 

mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed 

EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and 

downregulated EGFR protein expression in cells. This study could facilitate future investiga-

tions into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery 

system in vitro and in vivo.

Keywords: thiolated chitosan, nanoparticles, doxorubicin, antisense oligonucleotide, epidermal 

growth factor receptor, T47D breast cancer cells, controlled release

Introduction
As our understanding of the biological systems at molecular level increases, most of the 

biological expressions including onset of pathogenesis can be attributed more precisely 

to molecular dysfunctions.1 The promise of using antisense oligonucleotide (ASOND) 

to control gene function in diseased cells was first recognized over 20 years ago,2 but 

the major challenge in translating promise into clinical utility has been the lack of a 

method in delivering ASOND-based drugs to cells while avoiding the breakdown of 

these oligonucleotides through formulation or along the delivery routes. Thus, even 

though in vitro laboratory studies have been promising, the pace of developing this 

new class of drugs has been slow because of the difficulties mainly present in DNA/

RNA delivery to the cells.3 ASONDs are able to downregulate or specifically turn off 

individual genes and have therefore received much attention in gene therapy considering 
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their relative ease of synthesis and use.4 In the fight against 

cancer, ASOND-based drugs that block cancer genes from 

producing malicious proteins have the potential to become 

a powerful new weapon to complement drugs that function 

in other different ways.

ASOND is quite effective in decreasing gene  expression 

and protein production, a process known as gene knock 

down.5 Polymers and lipoplexes are two main vehicles with 

high potential to be used in ASOND drug delivery. Although 

7.1% of the gene therapy clinical trials by March 2010 were 

based on lipoplexes,6 several problems continue to limit their 

application as drug products for human use. For instance, 

the formation of lipoplexes involves complex interactions 

between the lipid molecules, in addition to those with nucleic 

acids. Additionally, the ability to control the size and mor-

phology of lipoplexes is rather limited, with resultant insta-

bility problems over time.7 Furthermore, toxicity associated 

with the use of lipoplexes in terms of immune stimulation 

of the host can also limit in vivo  application. The toxicity of 

lipoplexes is closely associated with the administered dose 

and it may in part result from their large size and the high 

positive surface charge.8,9 According to these limitations cat-

ionic polymers are interesting alternatives to cationic lipids. 

Furthermore the self-assembly of polymer nanoparticles 

does not involve interactions of the polycation molecules 

with each other, resulting in better control of their physical 

properties compared with lipoplexes. The chemical structures 

of various polymers contain repeated units that can be easily 

manipulated by chemical modification to improve the physi-

cal and biological properties of the resultant polyplexes, and 

consequently enhance their transfection  efficiency.10 Among 

the different properties studied in relation to nanoparticles, 

particle size and stability are the most critical issues that can 

affect the drug delivery process. According to this knowl-

edge, a careful choice of nanoparticle formulation method 

is necessary in preparing particles which are loaded with 

different substances.

Epidermal growth factor receptor (EGFR) is a trans-

membrane receptor whose overexpression in breast cancer 

predicts poor prognosis and is inversely correlated with 

expression of estrogen receptor.11 T47D cells belong to a 

moderately malignant breast cancer cell line which is placed 

somewhere in between MCF7 and BT474 breast cancer cell 

lines according to EGFR expression level.12 The inhibition 

of EGFR expression in all three cell lines has been shown 

to significantly inhibit cancer growth; thus any of these cells 

could be chosen to assess the potential of EGFR inhibition 

using an anticancer formulation.

Owing to its proven cytocompatibility, biodegradability, 

low toxicity, and high cationic potential, chitosan is a suitable 

candidate as a drug carrier.13 Thiolated chitosan has a high 

level of cohesive-, mucoadhesive-, enzyme inhibitory-, and 

permeation-enhancing properties,14 In order to investigate and 

evaluate the various properties of two recently  synthesized 

thiolated chitosan polymers, N-acetyl cysteine-chitosan 

(NAC-C) and N-acetyl penicillamine-chitosan (NAP-C), 

in anticancer drug delivery, these agents were formulated 

as nanoparticles loaded with ASOND and doxorubicin 

(DOX), which are known anticancer agents. This study 

further endeavored to establish the potential efficiency of 

these particles in an in vitro cancer model cell line known 

as T47D (human breast epithelial tumor cells) and evaluate 

the results.

Materials and methods
Preparation of thiolated chitosan
To prepare low-molecular-weight chitosan (LMWC), 500 mg 

of chitosan (medium molecular weight: 400 kDa; deacetyla-

tion degree 84.7%; Fluka Germany) was dissolved in acetic 

acid (6% [v/v]). Sodium nitrite (NaNO
2
, 20 mg) dissolved 

in 2.5 mL demineralized water was added to the solution of 

polymer. The mixture was incubated for 1 hour under continu-

ous stirring. Sodium hydroxide (4 M) was added to the mix-

ture leading to LMWC precipitation at pH 9. The precipitate 

was filtered and washed with cold acetone. The residue was 

resolubilized in 3.5 mL of 0.1 M acetic acid and exhaustively 

dialyzed against demineralized water using a dialysis tube 

(MW cut-off 12 kDa) followed by lyophilization at –30°C 

and a pressure down to 0.01 mbar. The molecular weight of 

the hydrolyzed chitosan was determined by dynamic light 

scattering using a nanosizer instrument (Malvern Zetasizer 

laser, Malvern Instruments, UK).

Two previously synthesized and characterized thiolated 

chitosans were prepared.14 Due to its significant effect on 

formulation size, conformation, and drug delivery LMWC 

(15 kDa) was used for thiolated chitosan preparation.15 

Briefly, 300 mg EDAC (1-ethyl-3-(3-dimethyl-aminopropyl) 

was added to 500 mg LMWC dissolved in 50 mL distilled 

water containing 2 mL HCl (1 N) and agitated for complete 

dissolution of EDAC. NAC or NAP (500 mg) was added to 

the mixture. The pH value of the preparations was adjusted 

to 5 and the mixtures were left at room temperature for 

3 hours under continuous stirring and capped with nitrogen 

gas-filled balloons to prevent oxidation of thiol groups during 

the synthesis process. Other samples serving as controls were 

prepared by the same method excluding EDAC. To isolate 
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the conjugated polymer and eliminate the unbound NAC or 

NAP, the mixtures were dialyzed for 3 consecutive days at 

10°C in the dark using a dialysis tube (MW cut off 12 kDa) 

as follows: first against 1.4 mM lactic acid, and then twice 

against the same medium but containing 1% NaCl to reduce 

ionic interaction between the cationic polymer and the anionic 

sulfhydryl groups, followed by dialysis against 1.4 mM lactic 

acid, and finally against 0.6 mM lactic acid to adjust the pH 

to 4. After 3 days the samples were lyophilized at –30°C and 

stored at 4°C for further use.

cell toxicity assays
A stable formulation should have a low cell toxicity with 

minimum effect on cell growth or viability. Roswell Park 

Memorial Institute culture medium (RPMI), containing salts, 

amino acids, and vitamins, was used as the T47D breast can-

cer cell medium in these experiments. RPMI 1640 (Gibco) 

culture medium supplemented with 10% fetal bovine serum 

(FBS) and 100 U/mL penicillin, 100 µg/mL streptomycin, 

2 mmol/L L-glutamine, and 1 mmol/L sodium pyruvate 

(Invitrogen) was prepared under sterile conditions. The 

T47D culture medium was kept at 4°C and warmed to 37°C 

before use. A breast cancer wild type cell line, T47D, was 

obtained from the American Type Culture Collection. This 

differentiated epithelial cell line contains both estrogen and 

progesterone receptors with a medium level of EGFR expres-

sion compared with other breast cancer cell lines.

Stocks of synthesized polymers (NAC-C, NAP-C) and 

control (LMWC) with predetermined concentrations of 0.25, 

0.5, 1.0, and 2.0 mg/mL in acetate buffer (5 mM; pH 5.5) 

were prepared. These concentrations were obtained after 

the study of particle conformation and stability. In brief, 

10 mg/mL stock concentrations of synthesized polymers 

(NAC-C, NAP-C) and control (LMWC) were used to prepare 

0.25, 0.5, 1.0, and 2.0 mg/mL solutions in a mixture contain-

ing dextrose (1%) and sodium sulfate (5 mM) at a ratio of 3:1. 

The preparations were then filtered using 0.22-µm filters.

T47D cells were thawed and counted using the direct 

method of Trypan blue dye exclusion.16,17 The cells were 

plated at 10,000 cell per well in a 96-well culture plate using 

RPMI supplemented only with 10% FBS. The plates were left 

at 37°C inside a 5% CO
2
 incubator. The medium of the wells 

containing cells with 80% confluence was replaced by 100 µL 

of medium containing 12 µL of each sample’s concentrate 

preparation mixed with 88 µL of free RPMI. The plates were 

kept inside the incubator at 37°C for 24 hours. The culture 

medium was then replaced with RPMI containing both FBS 

and antibiotic. The optical density (OD) of each well was  

measured by a solution composed of a novel tetrazolium 

compound [3-(4,5- dimethylthiazol-2-yl)-5- (3-carboxymet

hoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; 

MTS] and an electron coupling reagent (phenazine metho-

sulfate). In this assay, known as MTS assay, 20 µL of the 

ready to use solution is added to each well and the plates 

are placed at 37°C for 2 hours followed by the measurement 

of the absorption using a plate reader at 490 nm wavelength 

following promega protocol.18 The experiments were repeated 

three times and the data were collected each time from four 

wells to compare with control data (FBS-free RPMI).

Preparation of drug-loaded nanoparticles  
and investigation of physical and toxicological 
properties
A 2 mg/mL stock solution of DOX (Sigma D1515) in normal 

saline was mixed with RPMI to prepare a 2.5*10–7 M solution. 

ASOND stock (2.5 µL of 100 µM) was mixed with 37.5 µL 

dextrose (1%) and 10 µL sodium acetate buffer to a volume 

of 50 µL (ASOND sequence; 5′-CCGTGGTCATGCTCC-3′, 
complementary to positions 3811–3825 of the human EGFR 

cDNA, which contains the opal translation termination 

codon at residues 3817–3819). To prepare drug-loaded 

nanoparticles a concentration of 0.5 mg/mL polymer in 

sodium acetate buffer was prepared. Sodium sulfate (Na
2
SO

4
, 

5 µL of 5 mM) was added to ASOND (12 µL) and DOX 

(180 µL) stock solutions and 2.5 µL of the polymer stock 

solution was added to each tube. The spontaneously formed 

nanoparticles were vortexed for 50 seconds.19  Drug-loaded 

nanoparticles were recovered by centrifugation at 19,000 

rpm for 30–45 minutes and washed three times with distilled 

water to obtain the final pellet, which was lyophilized and 

kept at 4ºC for future experiments.

To study the stability of the particles, nanoparticles were 

exposed to acidic and basic media (0.1 N HCl and 0.01 N 

NaOH). Nanoparticle formulations were stored in glass tubes 

covered with aluminum foil and left for 24 hours at two tem-

peratures: 30 ± 2°C and 4 ± 2°C. A vacuum chamber was used 

to remove the residual water. Different particle formulations 

were sputter-coated with a gold layer (sputter coater AGAR 

B7340, Standard, UK) and viewed with a scanning electron 

microscope (SEM; Philips XL30 Scanning microscope, 

Philips, the Netherlands) to assess morphological changes.

To assess the cell toxicity levels of the active sub-

stances and nanoparticle formulations, T47D cells were 

plated at 10,000 cells/well in 96-well plates. After reaching 

80% confluence, the cells were brought into contact with 
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100 µL of FBS-free RPMI containing above-mentioned 

concentrations of DOX, ASOND, and 0.5 mg/mL of 

nanoparticle  formulations (NAC-C, NAP-C and LMWC, 

ASOND + NAC-C, ASOND + NAP-C, ASOND + LMWC, 

DOX + NAC-C, DOX + NAP-C and DOX + LMWC) for 

24 hours at 37°C. FBS-free and FBS-enriched RPMI were 

chosen as controls to exclude any chance of FBS interaction 

with cationic  polymers. T47D cell survival was assessed by 

applying a standard MTS assay following the same procedure 

as explained in Cell toxicity assays section. The experiments 

were repeated three times and the data were collected each 

time from four wells and compared with control data.

Drug-loading and drug-release studies
The release of DOX and ASOND from nanospheres was 

monitored in the presence of 20 mM sodium phosphate buf-

fer pH 7. Nanoparticle solutions were filled into a 12 kDa 

MW cut-off dialysis tube (Sigma-Aldrich, St. Louis, MO) 

and dialyzed against 1 × PBS (phosphate buffer saline) for 

15 hours at 37°C. Dissolution medium (1 mL) was taken at 

different time points for analysis of drug concentration in 

solution. The amount was replaced each time by fresh PBS 

to prevent drug saturation. The oligonucleotide concentration 

in the medium was determined by comparing the UV absor-

bance values (λ = 260 nm) before and after release.20

The concentration of the DOX released into the medium 

was determined using a UV-spectrophotometer (UV spectro-

photometer 1201, Shimadzu Co. Japan) at 488 nm.21

To study the effects of a reducing environment on drug 

release from these particles, a simulated environment similar 

to that of cytosol was created according to Carlisle et al22 by 

the addition of 0.01% threo-1,4-dimercapto-2,3-butandiol 

(DTT) as a reducing agent to PBS medium replacing PBS in 

the above experiment. The release data in this medium were 

obtained and compared with PBS medium data.

Drug content and loading efficiency of nanoparticles were 

calculated by the following formulae:

Drug contents =  [(drug weight in the nanoparticles)/

(weight of nanoparticles)] × 100

Loading efficiency =  [(Residual drug in the nanopar-

ticle)/(initial feeding amount of 

drug)] × 100

rT-Pcr and sYBer green real time Pcr
T47D cells were seeded in FBS-free RPMI in a 96-well cul-

ture plate. Twenty-four hours later the medium over the cells 

was replaced with 100 µL FBS free RPMI (control), poly-

meric nanoparticles ± ASOND and DOX (ASOND + NAC-C, 

NAC-C, DOX + NAC-C, NAP-C, ASOND + NAP-C, 

Dox + NAP-C, chitosan, ASOND + chitosan, DOX + chitosan), 

free ASOND and free DOX at concentrations previously 

mentioned (section Preparation of drug-loaded nanoparticles) 

All preparations were diluted in FBS-free RPMI to a final 

volume of 100 µL. The plates were incubated for 24 hours at 

37ºC and the culture medium was replaced by RPMI medium 

containing both FBS and antibiotic. Twenty-four hours later, 

the culture medium over the cells was emptied and 200 µL 

of TRI reagent was added to each well. The plates were put 

on a shaker for 5 minutes and the content of each well was 

then emptied into a sterile RNase/DNase-free microtube. 

Chloroform (120 µL) was added to each microtube. The 

tubes were vortexed for 15 seconds and incubated at room 

temperature for 10 minutes.

The samples were centrifuged at 11,000 rpm to separate 

the different phases. Three phases were separated with the 

upper phase containing RNA. This phase was transferred 

to a clean microtube and 300 µL of isopropanol was added 

to the tubes and mixed for 10 minutes at room temperature. 

The samples were then centrifuged at 4°C at 11,000 rpm for 

10 minutes. The above solution was emptied and 750 µL 

ethanol 75% (7.5 mL Merck ethanol and 2.5 mL RNase-free 

diethylpyrocarbonate [DEPC] water) was added to the white 

precipitate of RNA and mixed with a vortex instrument to 

wash the RNA residual. These samples were then centrifuged 

at 4°C and 11,000 rpm for 7 minutes. The above solution was 

emptied and the RNA precipitate was left to dry at room tem-

perature. The concentration and quality of the RNA samples 

were investigated using a spectrophotometer. The precipitated 

RNA was diluted in 50 µL of DEPC water and transferred into 

a fresh microtube. The measured OD was incorporated into 

the following formula: [RNA] (µg/mL) = A260 × Dilution 

Coefficient × 40.

The purity of RNA was determined by calculating OD 

260/280 ratio which was measured as ∼1.9, indicating the 

absence of protein or phenol contaminants. The RNA samples 

were stored at –20°C.

RevertAid™ First Strand cDNA Synthesis kit was used 

to make cDNA from RNA extracts according to the protocol 

provided by manufacturer.23 The product of RT was trans-

ferred to –20°C for later use in real time QPCR (quantitative 

polymerase chain reaction).

Specific EGFR primers were used to amplify the EGFR 

sequence in cDNA. EGFR primers [(forward) I (18-mer): 

5′-CAACATCTCCGAAAGCCA, and (reverse) II (19-mer): 

5′-CGGAACTTTGGGCGACTAT] and β-actin primers 

[(forward), 5′-GTCCTGTGGCATCCATCCACGAAACT 
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and (reverse), 5′-TACTTGCGCTCAGGAGGAGCAA] were 

provided by TIB MOLBIOL Company.

SYBR green real time PCR was performed using Bio-Rad 

CFX384 C1000 and analyzed using Bio-Rad CFX manager 

2.0 with reagents from the SYBR green PCR kit (QIAgen). 

After the addition of all components for each sample into the 

PCR 384 well plate with each well containing a final volume 

of 10 µL, the samples were transferred to a thermal cycler 

and PCR was started as follows: predenaturation at 94°C 

(5 minutes; one cycle) followed by 35 cycles of denatur-

ation at 94°C (30 seconds), annealing at 57°C (30 seconds), 

extension at 72°C (45 seconds), and a final extension at 72°C 

(8 minutes; one cycle), followed by a melting curve. All Ct 

(cycle threshold) values were collected at the exponential 

phase of the real time QPCR.

evaluation of egFr protein expression
T47D cells were seeded in FBS containing RPMI in six-

well culture plates. Twenty-four hours later the medium 

over the cells was emptied and PBS was used to wash 

the cells. The same groups (section RT-PCR and SYBER 

Green real time PCR) were prepared with appropriate 

polymer and drug concentrations in a volume of 1 mL 

FBS-free RPMI for each well. The plates were incubated 

for 24 hours at 37°C and the culture medium was replaced 

with RPMI medium containing both FBS and antibiotic. 

Forty-eight hours later, the culture medium over the cells 

was emptied and the treated and untreated T47D cells in 

six-well plates were washed with PBS and lysed in 120 µL 

RIPA buffer (1 mM EDTA, 1% Triton X-100, 0.1% sodium 

deoxycholate, 0.1% sodium dodecyl sulfate, 140 mM 

NaCl) supplemented with protease inhibitor on ice. The 

protein concentration was measured by Bradford assay 

in all the samples. Loading buffer (20 µL) was added to 

every 50 µg of cell protein and run at 100 V for 70 minutes. 

Proteins were transferred to a nitrocellulose membrane and 

incubated with EGFR antibody (1:1000) overnight. The 

next day the membranes were washed and incubated with 

the secondary antibody for 2 hours at room temperature. 

Expression of EGFR (170 kDa) was detected by West Pico 

Chemiluminescent Substrate (SuperSignal, Thermo Scien-

tific), photographed, and analyzed with genetool software 

(version 3.08, SynGene).

For immunocytochemical examination of T47D cells, 

cells were cultured on round glass cover-slips and treated as 

previously described. After the treatment cells were washed 

with PBS and fixed by acetone (100%) for 10 minutes 

at room temperature, washed and rehydrated with PBS. 

Hydrogen peroxidase activity was blocked by hydrogen 

peroxide (1%) in PBS for 30 minutes and the slides were 

washed in PBS three times for 5 minutes each and incubated 

for 1 hour with 1% primary antibody to EGFR (rabbit, 

Santa Cruz SC-03) in PBS containing 1% bovine serum 

albumin (BSA) for 1 hour at room temperature, washed in 

PBS three times and incubated with 1% secondary antibody 

Goat AntiRabbit HRP (Dako, po448) in PBS containing 

1% BSA for 1 hour at room temperature and again washed 

in PBS three times to remove the unbound antibodies. The 

signal was amplified by 1% of a third antibody, rabbit Anti 

Goat (Dako, po449) in PBS containing 1% BSA. The slides 

were washed in PBS and Dako AEC + High Sensitivity 

Substrate Chromogen (k3469) was used in all stainings to 

visualize protein bond antibody. The nuclei were visualized 

by hematoxylin counterstaining blue staining of the cell 

nuclei. The slides were washed in water and covered by 

glass cover-slips and photographed at 40× resolution using 

a light microscope and camera.

statistical data analysis
Statistical analysis was performed using GraphPad Prism 

version 5.00 for Windows (GraphPad Software, San 

Diego CA). ANOVA was used with Tukey test to compare 

the data groups with control.

Results and discussion
synthesis of chitosan conjugates
LMWC with a molecular weight of 15 kDa and 100% 

solubility at pH 7 was prepared. NAC and NAP attached 

covalently to the primary amino groups of chitosan via 

formation of amino bonds. The final structures are shown 

in Figure 1. EDAC (carbodiimide) activated the carboxylic 

acid moieties of NAC and NAP. LMWC was treated by the 

same procedure omitting EDAC during the coupling reaction 

and used as control. The lyophilized NAC-C and NAP-C 

appeared as white, odorless powders of fibrous structure that 

swelled easily at pH , 8 and formed a transparent gel of high 

viscosity. The lyophilized conjugates were stored at 4°C. The 

characterization of these polymers has been already reported 

in our previous study.14 The amount of thiol groups grafted on 

chitosan was determined via iodometric titration at pH 1–2 

(1 mM iodine; indicator: starch). It was estimated that the 

highest amount of grafted thiol groups was obtained by the 

addition of 300 mg EDAC at pH 5, with immobilization of 

300 µmol of thiol groups per gram chitosan. In the following 

experiments only polymers obtained from this optimum 

condition were used.
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cell toxicity assay
For toxicological evaluation, different concentrations of poly-

mers were tested on T47D cells and the level of cell prolifera-

tion was compared with FBS-free RPMI as control by MTS 

assay. The results indicate that all polymers have a low but 

significant degree of toxicity compared with FBS-free RPMI. 

Thiolated chitosan polymers did not show a higher level of 

toxicity than LMWC (Figure 2). The lower the  concentration 

of polymers the more similar are the measured effect they 

have on the wells containing T47D cells, enabling us to 

prevent variation in measurements. There was a significant 

difference in cell proliferation with polymer concentrations 

compared with FBS-free RPMI. According to the results 

achieved in cell toxicity studies, the 0.5 mg/mL concentration 

of the polymers was chosen to perform future experiments. 

Polymers in this concentration formed the desired spherical 
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Figure 1 Presumptive structures of (A) NAc-chitosan and (B) NAP-chitosan conjugates.
Abbreviations: NAc, N-acetyl cysteine; NAP, N-acetyl penicillamine.
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nanoparticles with a diameter of 150–300 nm and accord-

ing to the results obtained later on, were able to capture and 

carry active substances to the desired site. ANOVA was used 

with Tukey test to compare the data groups to control. All 

the data groups showed a significant difference compared to 

control (P , 0.0001).

Preparation of nanoparticles and nanoparticle 
characterization
Nanoparticles containing DOX and ASOND were prepared 

following the procedure explained in section Preparation of 

drug-loaded nanoparticles. The drug-loaded nanoparticles 

were centrifuged at high speed, the supernatant was emptied, 

and the remaining nanoparticles were lyophilized. Polymer 

nanoparticles without any drug were also prepared to make 

a comparison with those containing the active substances. 

The SEM micrograph from four different formulations are 

shown in Figure 3 (A–D); 80%–90% of the particles had a 

size range of 200–300 nm with a spherical shape.

These nanoparticles were dispersed in phosphate buffer 

(pH 7.4) and analyzed based on their surface charge and size 

with a sharp peak at the indicated points (Table 1), indicat-

ing a 55 ± 5% particle size distribution frequency (data not 

shown). Thiolated chitosan particles had a higher zeta poten-

tial than chitosan but zeta potential decreased significantly for 

nanoparticles containing ASOND. The lower zeta potential 

obtained for ASOND-containing particles is probably due 

to the negative charge of the active substance.24

In particles containing DOX the zeta potential of the 

particles slightly increased due to the cationic nature of this 

substance.25 The particle size for all formulations remained 

in the range 200–230 nm. The size range of these particles is 

comparable to the particle sizes obtained by other groups.26

Cell toxicity assay conducted according to MTS where 

active substances and formulated nanoparticles were used 

demonstrated that DOX in any form (free/nanoparticle) 

applied to cells was toxic and significantly decreased cell 

survival in comparison with both controls (RPMI + 10% 

FBS and FBS-free RPMI) and other treatments (Figure 4). 

Thus the cells were not resistant to this compound. Thiolated 

nanoparticles containing ASOND showed lower cytotoxic 

effects than free ASOND thus signifying a lower toxicity 

of ASOND in nanparticle formulation. NAC-C and NAP-C 

did not show higher cell toxicity levels than chitosan and 

FBS-free RPMI (negative control.) All the treatments 

showed a significant decrease in cell survival compared with 

RPMI + 10% FBS (positive control). FBS-enriched RPMI 

medium had the highest growth-inducing effect on cells and 

DOX-containing medium showed the highest inhibitory 

effect on cell proliferation.

Drug-loading and drug-release studies
The thiolated nanoparticles had a loading efficiency of 63% 

for ASOND and 70% for DOX. LMWC nanoparticles con-

taining ASOND or DOX had a 50%–60% loading efficiency. 

ASOND had a negative charge, probably forming a stronger 

binding force to the positively charged polymers like thio-

lated chitosan. Entrapment of DOX, a cationic and hydro-

philic molecule, into nanoparticles formed by ionic gelation 

of the positively charged polysaccharides, chitosan/thiolated 

chitosan, was achieved successfully probably due to the 

addition of Na
2
SO

4
 directly to this substance as it contributes 

to the decreasing water solubility of DOX.27 In examining 

thiolated chitosan particles exposed to either acidic or basic 

media (0.1 N HCl and 0.01 N NaOH) no particular change 

was observed according to SEM graphs, demonstrating the 

stability in both media. The release of drug from particles was 

examined in PBS (pH 7.4). In a second experiment the release 

studies were performed under reducing conditions achieved 

by 0.01% DTT, simulating intracellular redox conditions 

of cytosol as described previously by Carlisle et al.28 There 

was a controlled release pattern during 15 hours for all the 

A B C D

250 nm

Figure 3 representative seM micrograph of nanoparticles formulated via sulfate gelation with Na2sO4. (A) chitosan nanoparticles, (B) thiolated chitosan (NAP-c) 
nanoparticles, (C) DOX-NAc-c nanoparticles, (D) AsOND-NAc-c nanoparticles demonstrate a spherical, uniform shape with a particle size of 150–300 nm.
Abbreviations: DOX, doxorubicin; NAc-c, N-acetyl cysteine-chitosan; NAP-c, N-acetyl penicillamine-chitosan; AsOND, antisense oligonucleotide; seM, scanning 
electron microscope.
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particles (Figure 5A and B). Chitosan nanoparticles tended to 

have a faster rate of release probably because nanoparticles 

are less stable due to the lack of disulfide bonds compared 

with thiolated chitosan. Within 15 hours, ASOND and DOX 

were completely released from chitosan-based particles 

while only about 22% of drug was released from thiolated 

chitosan-based particles. These nanoparticles dissociated, 

liberating approximately 50% of both compounds within 

7 hours. Thiolated chitosan nanoparticles were very stable, 

having formed inter-/intra-molecular disulfide bonds and 

decreasing drug release compared with chitosan particles. 

A reducing agent like DTT breaks up such bonds helping 

the release of drug from thiolated nanoparticles, a process 

similar to what happens inside a cell (Figure 5 A and B). The 

simulated medium did not affect drug release from chitosan 

nanoparticles and the data were not included in the graph.

Analysis of egFr gene expression  
in T47D cells
T47D cells were brought into contact with different formu-

lations. RNA was extracted from the cells and DNA was 

synthesized from the sequence. The DNA obtained from the 

reaction was amplified using specific primers against EGFR 

and β-actin by RT QPCR. The data were collected at the 

exponential phase of the reaction. The EGFR Ct value was 

normalized to β-actin (house keeping gene) and the relative 

expression for each sample was measured.  Figure 6 shows the 

percentage knock down of EGFR in different treatments com-

pared with FBS-free RPMI-treated cells (0% knock down.) 

Table 1 The surface charge and size of different nanoparticle 
formulations was measured by a zeta sizer instrument in phos-
phate buffer

Nanoparticle  
formulations (N = 3)

Zeta potential  
(mV)

Nano particle  
size (nm)

NAc-c-AsOND 14 ± 3 224 ± 5
NAP-c-AsOND 16 ± 2 201 ± 10
chitosan-AsOND 12 ± 2 264 ± 5
NAP-c-DOX 20 ± 3 275 ± 5
NAc-c-DOX 20 ± 3 326 ± 5
chitosan-DOX 21 ± 2 227 ± 5
NAc-c 23 ± 3 214 ± 10
NAP-c 22 ± 4 188 ± 5
chitosan 18 ± 2 224 ± 5

Abbreviations: AsOND, antisense oligonucleotide; DOX, doxorubicin; NAc-c, 
N-acetyl cysteine-chitosan; NAP-c, N-acetyl penicillamine-chitosan.
Notes: Data represent the mean of three replicates in two separate experiments 
(mean ± sD).
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Figure 4 MTs assay measured the effect of polymer nanoparticles (0.5 mg/mL) containing AsOND and DOX (25 × 10-7 M) on T47D cancer cell proliferation 24 hours after 
treatment. The data are mean ± sD of three separate experiments in four wells. In ANOVA tests all the data were compared with controls (rPMI + 10% FBs- and FBs-free rPMI).
Notes: *Significantly different from FBS-free RPMI; #rPMI + 10% FBS is significantly different from all the other treatments (P < 0.0001).
Abbreviations: AsOND, antisense oligonucleotide; DOX, doxorubicin; MTs, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium, 
NAc-c, N-acetyl cysteine-chitosan; NAP-c, N-acetyl penicillamine-chitosan; LMWc, low-molecular-weight chitosan; rPMI, roswell Park Memorial Institute medium; FBs, 
fetal bovine serum; sD, standard deviation.
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Figure 5 Percentage release of AsOND and doxorubicin from 5 mg of drug-loaded nanoparticles during 15 hours in PBs and cytosol simulated medium using DTT. 
(A) Percentage release of AsOND, (B) Percentage release of doxorubicin. The release data are mean ± sD for each formulation at different time points indicated (n = 4).
Abbreviations: AsOND, antisense oligonucleotide; DOX, doxorubicin; NAc-c, N-acetyl cysteine-chitosan; NAP-c, N-acetyl penicillamine-chitosan; LMWc, low-
molecular-weight chitosan; rPMI, roswell Park Memorial Institute medium; FBs, fetal bovine serum; PBs, phosphate buffered saline; DTT, threo-1,4-dimercapto-2,3-
butandiol; sD, standard deviation.
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Figure 6 real-time Pcr analysis of egFr gene expression in T47D cells subjected to different treatments. The results were normalized to beta-actin gene expression and the relative 
expression of egFr was presented as percent knock down of egFr. FBs-free rPMI treatment was chosen as control, which presented no knock down of egFr and all the other cell 
treatments were compared with this control. All data are presented as percent knock down of EGFR and are significantly different to control.
Notes: *Difference to control or free polymers (gray bars) within each group separated by indicator lines; #significant difference of each formulation containing ASOND or 
DOX compared to free DOX or AsOND (P , 0.05); data are mean sD (n = 3).
Abbreviations: AsOND, antisense oligonucleotide; DOX, doxorubicin; egFr, epidermal growth factor receptor; NAc-c, N-acetyl cysteine-chitosan; NAP-c, N-acetyl 
penicillamine-chitosan; LMWc, low-molecular-weight chitosan; rPMI, roswell Park Memorial Institute medium; FBs, fetal bovine serum; PBs, phosphate buffered saline; sD, 
standard deviation.
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Figure 7 Analysis of egFr protein expression in T47D cells. (A)  Western blot analysis of egFr expression in T47D cells through different treatments;  (B) immunocytochemical 
analysis of egFr protein expression in T47D cells. (1) FBs-free rPMI; (2) AsOND; (3) DOX; (4) NAc-c; (5) AsOND + NAc-c; (6) DOX + NAc-c;, (7) NAP-c; (8) 
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observed in cytoplasm and on the membrane of the cells and the blue stain indicates the nuclei of the cell.
Note: *Significantly different from FBs-free rPMI treated cells as controls (mean ± sD; n = 3).
Abbreviations: AsOND, antisense oligonucleotide; DOX, doxorubicin; egFr, epidermal growth factor receptor; NAc-c, N-acetyl cysteine-chitosan; NAP-c, N-acetyl 
penicillamine-chitosan; LMWc, low-molecular-weight chitosan; rPMI, roswell Park Memorial Institute medium; FBs, fetal bovine serum; PBs, phosphate buffered saline; sD, 
standard deviation.
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DOX and DOX-containing nanoparticles decreased 

EGFR expression significantly (Figure 6 [3, 6, 9, 12])  

compared with control particles (Figure 6 [1, 4, 7, 10]). DOX 

decreased EGFR expression more than ASOND. Probably 

this  observation is due to DOX cytotoxic effects on T47D 

cells. In particular it was observed from cell survival data 

and EGFR expression level that thiolated chitosan poly-

mers cannot decrease the cell toxicity of this compound.  

It is clear that because of the high level of cytotoxicity 

observed with this compound and the mechanism of action, 

DOX is not the preferred drug in EGFR suppression studies 

causing high levels of cell death.

ASOND (Figure 6 [2]) decreased the expression of 

EGFR twice as much as control, while thiolated nanopar-

ticles containing ASOND (Figure 6 [5, 8, 11]) were twice 

as effective than ASOND or ASOND + LMWC (Figure 6 

[11]) nanoparticles in EGFR knock down. From drug 

release, cell survival, and gene expression data it could be 

concluded that thiolated chitosan nanoparticles containing 

ASOND decreased the cytotoxic effects of this compound 

probably due to a slower rate of release, resulting in higher 

levels of EGFR gene suppression. EGFR expression level 

was confirmed by gel electrophoresis on the end product of 

RT QPCR (data not shown).

Analysis of egFr protein expression  
in T47D cells
EGFR expression in T47D cells after different treatments 

was studied using Western blot analysis and cell antibody 

staining. Western blot and immunocytochemical results 

showed a significant downregulation of this protein in all 

treated groups except those treated with FBS-free RPMI, 

NAC-C, NAP-C, and chitosan (Figure 7A and B). The 

results show that ASOND-loaded particles (Figure 7A [5, 

8, 11]) downregulated EGFR expression approximately 

twice as much as free ASOND (Figure 7A [2]). DOX-

loaded nanoparticles (Figure 7A [6, 9, 12]) showed a similar 

result to free DOX (Figure 7A [3]). Thus EGFR protein 

expression data further confirm EGFR gene expression 

data obtained through different treatments. Cell staining 

using EGFR antibody was performed. The control cells 

and cells treated with empty particles showed expression 

of EGFR protein in cytoplasmic portion and the membrane 

of the cells (Figure 7B [1, 4, 7, 10]). The intensity of the 

stain decreased through treatment with either free DOX or 

ASOND (Figure 7B [2, 5]) and the expression was very low 

when nanoparticles loaded with DOX and ASOND were 

incorporated (Figure 7B [3, 6, 8, 9, 11]). Normally EGFR 

protein present on the cell membrane is internalized after 

activation of this protein which signifies the binding of this 

receptor to its substrate and activation of EGFR.29 While in 

T47D cells EGFR was observed in cytoplasmic and mem-

brane portion of the cells, the localization of this protein 

after treatment was mostly on the cell membrane, which 

could signify a lower degree of expression due to either 

EGFR knock down by ASOND or inhibition of production, 

leading to lower functionality of this protein shown by a 

lower internalization level.

Conclusion
In this study the anticancer drugs ASOND and DOX were 

loaded into two recently synthesized thiolated chitosan 

polymers, NAC-C and NAP-C, by a gelation method. The 

efficiency of nanoparticle formulations against EGFR expres-

sion was evaluated in vitro on T47D breast cancer cells, with 

promising results.

The particle size and morphology of polymer nanopar-

ticles depend on the structure and molecular weight of poly-

mer, pH and ionic strength of the surrounding environment, 

method of preparation, and the charge of the polymer used 

for nanoparticle formulation. Thiolated chitosan under opti-

mum conditions physically condenses nucleic acids.30 This 

contributes to the formation of nanoparticles (200 ± 30 nm), 

with an acceptable level of cellular uptake demonstrated by 

downregulation of EGFR expression in T47D cells.

Different groups have investigated the potential benefits of 

ASOND-loaded chitosan nanoparticles in different settings. 

Ozbas-Turan et al have shown the potential of chitosan as a 

carrier of ASOND across the skin barrier to inhibit β-Gal with 

a long and sustained effect. The high permeability of ASOND 

into skin layer was noted to be probably due to the effect of 

chitosan on tight junctions and an increase in permeability.31 

Manchanda et al have described that controlled-size chitosan 

nanoparticles produced using reverse micellar system is an 

efficient biocompatible ASOND delivery system with high 

cellular viability compared with lipofectamine.32 It has also 

been shown that chitosan nanoparticles protect the ASOND 

molecule during preparation and treatment.33 Protection of 

DNA from enzymatic degradation through these nanopar-

ticles, which is critical for in vivo efficiency and a highly tar-

geted delivery, is another known beneficial effect observed.34 

Despited all the positive and promising results published, the 

use of these particles in in vivo studies is still limited. Thus, 
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more in vitro studies are needed to further evaluate the poten-

tial use of such particles systematically in vivo.

The presence of thiol groups on the surface of the thio-

lated chitosan polymers (NAC-C and NAP-C) confers high 

mucoadhesive properties to the polymer, and the covalent 

cross linkage between sulfhydryl groups present on thiolated 

chitosan contributes to the formation of uniform nanopar-

ticles stable in both acidic and basic media, as previously 

shown by our group.14

Recently Gazori et al investigated the significant inhibitory 

effect of ASOND-loaded chitosan/alginate nanoparticles on 

EGFR expression in T47D cells,35 which show the ASOND 

protective properties of chitosan polymer while creating a 

sustained release delivery system for ASOND and DOX. 

Here we show that the use of thiolated chitosan also prevents 

the degradation of the active substances promoting sustained 

release properties. According to the results obtained from 

our loading/release studies and resistance to acidic and basic 

media, NAC-C and NAP-C particles are able to protect and 

release the active substances within a set period of time, leading 

to a significant decrease in the expression level of EGFR.

In comparison with chitosan, thiolated chitosan nanopar-

ticles gain triggered release properties in reducing environments 

and have a higher degree of structural stability and mucoadhe-

siveness. These particles have an acceptable drug-loading/cap-

ture capacity and show a significantly higher rate of transfection, 

as observed by the high level of EGFR knock down through 

ASOND therapy. Thus, ASOND-loaded NAC-C and NAP-C 

nanoparticles seem to be good candidates for a more in-depth 

cancer therapy research in future experiments in vivo.

Acknowledgment
We thank the Clinical Pharmacology Department of the 

University Medical Center Groningen, The Netherlands for 

their technical support.

Disclosure
The authors declare no conflicts of interest in relation to 

this paper.

References
1. Yadava PK. Nucleic acid therapeutics: current targets for anti-

sense oligonucleotides and ribozymes. Molecular Biology Today.  
2000:1–16.

2. Zamecnik PC, Stephenson ML. Inhibition of rous-sarcoma virus-
replication and cell transformation by a specific oligodeoxynucleotide. 
Proc Natl Acad Sci U S A. 1978;75(1):280–284.

3. Stein CA. Two problems in antisense biotechnology: in vitro delivery 
and the design of antisense experiments. Biochimica et Biophysica Acta. 
1999;1489(1):45–52.

4. Israel ZH, Domb AJ. Polymers in gene therapy: antisense delivery sys-
tems. Polym Adv Technol. 1998;9(10–11):799–805.

 5. Panyam J, Labhasetwar V. Biodegradable nanoparticles for 
drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 
2003;55(3):329–347.

 6. John Wiley. Gene therapy clinical trials worldwide, provided by journal 
of gene medicine, 2009 [online]. London, UK. http://www.wiley.co.uk/
genetherapy/clinical/. Accessed Dec 15, 2009.

 7. Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated 
DNA delivery. Appl Microbiol Biotechnol. 2003;62(1):27–34.

 8. Dass CR. Cytotoxicity issues pertinent to lipoplex-mediated gene 
therapy in-vivo. J Pharm Pharmacol. 2002;54(5):593–601.

 9. Lv HT, Zhang SB, Wang B, Cui SH, Yan J. Toxicity of cationic 
lipids and cationic polymers in gene delivery. J Control Release. 
200610;114(1):100–109.

 10. Wagner E. Strategies to improve DNA polyplexes for in vivo 
gene transfer: will “artificial viruses” be the answer? Pharm Res. 
2004;21(1):8–14.

 11. Yarden RI, Wilson MA, Chrysogelos SA. Estrogen suppression of EGFR 
expression in breast cancer cells: a possible mechanism to modulate 
growth. J Cell Biochem. 2001;232–246.

 12. McGaffin KR, Acktinson LE, Chrysogelos SA. Growth and EGFR 
regulation in breast cancer cells by vitamin D and retinoid compounds. 
Breast Cancer Res Treat. 2004;86(1):55–73.

 13. Lee KY, Kwon IC, Kim YH, Jo WH, Jeong SY. Preparation of chi-
tosan self-aggregates as a gene delivery system. J Control Release. 
1998;51(2–3):213–220.

 14. Atyabi F, Talaie F, Dinarvand R. Thiolated chitosan nanoparticles as 
an oral delivery system for amikacin: in vitro and ex vivo evaluations. 
J Nanosci Nanotechnol. 2009;9(8):4593–47603.

 15. Luangtana-anan M, Opanasopit P, Ngawhirunpat T, et al. Effect of 
chitosan salts and molecular weight on a nanoparticulate carrier for 
therapeutic protein. Pharm Dev Technol. 2005;10(2):189–196.

 16. Celis J. Cell Biology. 2nd ed. USA: Academic Press; 2009.
 17. Freshney R. Culture of Animal Cells. 4th ed. Wiley-Liss: USA; 2009.
 18. Promega Corporation. Technical bulletin. 2006. Available from: 

www.promega.com.cn/techserv/tbs/TB241–550/tb317.pdf. Accessed  
Dec 15, 2009.

 19. Jagannath C, Wells A, Mshvildadze M, et al. Significantly improved 
oral uptake of amikacin in FVB mice in the presence of CRL-1605 
copolymer. Life Sciences. 1999 2;64(19):1733–1738.

 20. Jeong YI, Choi KC, Song CE. Doxorubicin release from core-shell type 
nanoparticies of poly(DL-lactide-co-glycolide)-grafted dextran. Arch 
Pharm Res. 2006;29(8):712–719.

 21. Tondelli L, Ricca A, Laus M, Lelli M, Citro G. Highly efficient 
cellular uptake of c-myb antisense oligonucleotides through spe-
cif ically designed polymeric nanospheres. Nucleic Acids Res. 
1998;26(23):5425–5431.

 22. Carlisle RC, Etrych T, Briggs SS, Preece JA, Ulbrich K, 
Seymour LW. Polymer-coated polyethylenimine/DNA complexes 
designed for triggered activation by intracellular reduction. J Gene 
Med. 2004;6(3):337–344.

 23. Roche Corporation. Technical bulletin. 2006. http://search.cosmobio.
co.jp/cosmo_search_p/search_gate2/docs/FER_/K1621.20060615.pdf. 
Accessed Dec 15, 2009.

 24. Miller KJ, Das SK. Antisense oligonucleotides: strategies for delivery. 
Pharm Sci Technolo Today. 1998;1(9):377–386.

 25. Dindo D, Dahm F, Szulc Z, et al. Cationic long-chain ceramide 
LCL-30 induces cell death by mitochondrial targeting in SW403 cells. 
Mol Cancer Ther. 2006;5(6):1520–1529.

 26. Lee D, Zhang W, Shirley SA, et al. Thiolated chitosan/DNA nano-
complexes exhibit enhanced and sustained gene delivery. Pharm Res. 
2007;24(1):157–167.

 27. Salay LC, Schreier S. Effect of a kosmotropic ion on doxorubicin self-
assembly and interaction with biomimetic systems. Springer Berlin/
Heidelberg 128/2004. 2004.

 28. Carlisle RC, Etrych T, Briggs SS, Preece JA, Ulbrich K, 
Seymour LW. Polymer-coated polyethylenimine/DNA complexes 
designed for triggered activation by intracellular reduction. J Gene 
Med. 2004;6(3):337–344.

RETRACTED

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://www.wiley.co.uk/genetherapy/clinical/
http://www.wiley.co.uk/genetherapy/clinical/
www.promega.com.cn/techserv/tbs/TB241-550/tb317.pdf
http://search.cosmobio.co.jp/cosmo_search_p/search_gate2/docs/FER_/K1621.20060615.pdf
http://search.cosmobio.co.jp/cosmo_search_p/search_gate2/docs/FER_/K1621.20060615.pdf
http://search.cosmobio.co.jp/cosmo_search_p/search_gate2/docs/FER_/K1621.20060615.pdf


International Journal of Nanomedicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-nanomedicine-journal

The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology 
in diagnostics, therapeutics, and drug delivery systems throughout 
the biomedical field. This journal is indexed on PubMed Central, 
MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, 

Journal Citation Reports/Science Edition, EMBase, Scopus and the 
Elsevier Bibliographic databases. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

International Journal of Nanomedicine 2011:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

1975

Thiolated chitosan nanoparticles to deliver antisense therapy

 29. Wang Q, Villeneuve G, Wang ZX. Control of epidermal growth  factor 
receptor endocytosis by receptor dimerization, rather than receptor 
kinase activation. EMBO Rep. 2005;6(10):942–948.

 30. Lee D, Zhang W, Shirley SA et al. Thiolated chitosan/DNA nano-
complexes exhibit enhanced and sustained gene delivery. Pharm Res. 
2007;24(1):157–167.

 31. Ozbas-Turan S, Akbuga J, Sezer AD. Topical application of antisense 
oligonucleotide-loaded chitosan nanoparticles to rats. Oligonucleotides. 
2010;20(3):147–153.

 32. Manchanda R, Nimesh S. Controlled size chitosan nanoparticles as an 
efficient, biocompatible oligonucleotides delivery system. J Appl Polym 
Sci. 2010;118(4):2071–2077.

 33. Azizi E, Namazi A, Haririan I, et al. Release profile and stability evalu-
ation of optimized chitosan/alginate nanoparticles as EGFR antisense 
vector. Int J Nanomedicine. 2010;5:455–461.

 34. Bordelon H, Biris AS, Sabliov CM, Monroe WT. Characterization of 
plasmid DNA location within chitosan/PLGA/pDNA nanoparticle 
complexes designed for gene delivery. J Nanomater. 2011;8:1–8.

 35. Gazori T, Haririan I, Fouladdel S, Namazi A, Nomani A, Azizi E. 
 Inhibition of EGFR expression with chitosan/alginate nanoparticles 
encapsulating antisense oligonucleotides in T47D cell line using RT-PCR 
and immunocytochemistry. Carbohydr Polym. 2010;80(4):1042–1047.

RETRACTED

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/international-journal-of-nanomedicine-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


