Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 13

The relationship between exercise capacity and different functional markers in pulmonary rehabilitation for COPD

Authors Kerti M, Balogh Z, Kelemen K, Varga JT

Received 8 October 2017

Accepted for publication 28 December 2017

Published 28 February 2018 Volume 2018:13 Pages 717—724

DOI https://doi.org/10.2147/COPD.S153525

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Charles Downs

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell

Maria Kerti, Zsuzsanna Balogh, Krisztina Kelemen, Janos T Varga

Department of Pulmonary Rehabilitation, National Koranyi Institute for Pulmonology, Budapest, Hungary

Rationale: The relationship of functional parameters such as lung mechanics, chest kinematics, metabolism and peripheral and respiratory muscle function with the level of exercise tolerance remains a controversial subject. While it has been previously shown that pulmonary rehabilitation is capable of improving exercise tolerance in patients afflicted by COPD, as expressed by values of 6-minute walking test (6MWT), the degree of contribution to this change by each of the aforementioned parameters remains unclear.
Aims: To investigate the correlation between changes in exercise capacity and other functional markers following pulmonary rehabilitation in COPD and to determine which parameters are more closely related to improvements of exercise tolerance.
Materials and methods: Three hundred and twenty-seven patients with COPD (with average, 95% CI for forced expiratory volume in the first second [FEV1]: 45% [25%–83%] predicted, age: 64 [48–80] years, and BMI: 27 [13.5–40.4] kg/m2) participated in this study. Thirty percent of the patients had pulmonary hypertension as comorbidity. Patients underwent a pulmonary rehabilitation program with 20–30 minutes sessions two to three times per day for 4 weeks. The program was composed of chest wall-stretching, controlled breathing exercises, and a personalized training schedule for cycling and treadmill use. Measurements of 6MWT, lung function, chest wall expansion, grip strength, maximal inspiratory pressure, and breath holding time were taken. The Body mass index, airflow Obstruction, Dyspnea and Exercise capacity (BODE-index), body mass index [BMI], FEV1, 6MWT, modified Medical Research Dyspnea Scale score, and an alternative scale score (for BMI, FEV1, 6MWT, and COPD Assessment Test) were calculated.
Results: Rehabilitation resulted in a generalized improvement in 6MWT among patients (average: 360 [95% CI: 178–543 m] vs average: 420 [95% CI: 238–601 m], p<0.05). Improvements in exercise tolerance were found to be most closely associated with changes in composite BODE-index (R2=-0.6), Alternative Scale (R2=-0.56), dyspnea score (modified Medical Research Dyspnea Scale R2=-0.54), and health status (COPD Assessment Test R2=-0.4, p<0.05). In addition, improvements in exercise tolerance were found to moderately correlate with improvements in inspiratory vital capacity (IVC, R2=0.34, p<0.05). Post-rehabilitation changes in IVC displayed a connection with grip strength (R2=0.6) and chest expansion (R2=0.48).
Conclusion: Enhancements in exercise tolerance had correlation with changes in IVC, BODE-index, and the new Alternative Scale. However, comprehensive assessment needs to include considerations of chest kinematics and peripheral and respiratory muscle function as well.

Keywords: exercise tolerance, lung mechanics, respiratory and peripheral muscle function, breath holding time, health status

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]