Back to Journals » Drug Design, Development and Therapy » Volume 8

Synthesis, antimicrobial, and anti-inflammatory activity, of novel S-substituted and N-substituted 5-(1-adamantyl)-1,2,4-triazole-3-thiols

Authors Al-Abdullah ES, Asiri HH, Lahsasni S, Habib EE, Ibrahim TM, El-Emam AA

Received 14 February 2014

Accepted for publication 12 March 2014

Published 12 May 2014 Volume 2014:8 Pages 505—518

DOI https://doi.org/10.2147/DDDT.S62465

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Ebtehal S Al-Abdullah,1 Hanadi H Asiri,1 Siham Lahsasni,2 Elsayed E Habib,3 Tarek M Ibrahim,4 Ali A El-Emam1

1Department of Pharmaceutical Chemistry, College of Pharmacy, 2Department of Chemistry, College of Sciences, King Saud University, Riyadh, 3Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medinah, Saudi Arabia; 4Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt

Abstract: The reaction of 5-(1-adamantyl)-4-phenyl-1,2,4-triazoline-3-thione (compound 5) with formaldehyde and 1-substituted piperazines yielded the corresponding N-Mannich bases 6a–f. The reaction of 5-(1-adamantyl)-4-methyl-1,2,4-triazoline-3-thione 8 with various 2-aminoethyl chloride yielded separable mixtures of the S-(2-aminoethyl) 9a–d and the N-(2-aminoethyl) 10a–d derivatives. The reaction of compound 5 with 1-bromo-2-methoxyethane, various aryl methyl halides, and ethyl bromoacetate solely yielded the S-substituted products 11, 12a–d, and 13. The new compounds were tested for activity against a panel of Gram-positive and Gram-negative bacteria and the pathogenic fungus Candida albicans. Compounds 6b, 6c, 6d, 6e, 6f, 10b, 10c, 10d, 12c, 12d, 12e, 13, and 14 displayed potent antibacterial activity. Meanwhile, compounds 13 and 14 produced good dose-dependent anti-inflammatory activity against carrageenan-induced paw edema in rats.

Keywords: adamantane derivatives, 1,2,4-triazoles, N-Mannich bases, antimicrobial activity, anti-inflammatory activity


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010