Back to Journals » Neuropsychiatric Disease and Treatment » Volume 9

Superior antidepressant effect occurring 1 month after rTMS: add-on rTMS for subjects with medication-resistant depression

Authors Chen SJ, Chang CH, Tsai HC, Chen ST, Lin CC

Received 18 November 2012

Accepted for publication 23 January 2013

Published 26 March 2013 Volume 2013:9 Pages 397—401

DOI https://doi.org/10.2147/NDT.S40466

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Shaw-Ji Chen,1,2 Chung-Hung Chang,3 Hsin-Chi Tsai,2,4 Shao-Tsu Chen,2,4 Chaucer CH Lin2,4

1Department of Psychiatry, Mackay Memorial Hospital Taitung Branch, Taitung; 2School of Medicine, Buddhist Tzu Chi University, Hualien; 3Department of Psychiatry, China Medical University Hospital, Taichung; 4Department of Psychiatry, Buddhist Tzu Chi General Hospital, Hualien, Taiwan

Abstract: Depression is a major psychiatric disorder. The standard treatment for depression is antidepressant medication, but the responses to antidepressant treatment are only partial, even poor, among 30%–45% of patients. Refractory depression is defined as depression that does not respond to antidepressant therapy after 4 weeks of use. There is evidence that repetitive transcranial magnetic stimulation (rTMS) may exert effects in treating psychiatric disorder through moderating focal neuronal functions. High-frequency rTMS on the left prefrontal area and low-frequency rTMS on the right prefrontal area were shown to be effective in alleviating depressive symptoms. Given the statistically significant antidepressant effectiveness noted, the clinical application of rTMS as a depression treatment warrants further studies. Application of rTMS as an add-on therapy would be a practical research model. High-frequency (5–20 Hz) rTMS over the left dorsolateral prefrontal cortex was found to have a significant effect on medication-resistant depression. In the present study, we not only measured the acute antidepressant effect of rTMS during treatment and immediately after its completion but also evaluated participants 1 month after completion of the treatment protocol. Study participants were divided into two groups: an active rTMS group (n = 10) and a sham group (n = 10). The active rTMS group was defined as participants who received the rTMS protocol, and the sham group was defined as participants who received a sham rTMS procedure. A significant Hamilton Depression Rating Scale score reduction was observed in both groups after the fifth and tenth treatments. However, those in the active rTMS group maintained their improvement as measured one month after completion of the rTMS protocol. Participants who received active rTMS were more likely to have persistent improvement in depression scores than participants who received sham rTMS.

Keywords: major depressive disorder, repetitive transcranial magnetic stimulation, treatment-resistant depression, efficacy, adverse effect

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats

Chen HH, Chiang YC, Yuan ZF, Kuo CC, Lai MD, Hung TW, Ho IK, Chen ST

Neuropsychiatric Disease and Treatment 2015, 11:609-618

Published Date: 6 March 2015

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010