Back to Journals » Neuropsychiatric Disease and Treatment » Volume 9

Role of nucleus accumbens glutamatergic plasticity in drug addiction

Authors Quintero GC

Received 30 March 2013

Accepted for publication 14 August 2013

Published 30 September 2013 Volume 2013:9 Pages 1499—1512

DOI https://doi.org/10.2147/NDT.S45963

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Gabriel C Quintero1–3

1
Florida State University – Panama, Clayton, Panama; 2Medical University of South Carolina, Charleston, South Carolina, USA; 3Smithsonian Tropical Research Institute, Ancon, Republic of Panama

Abstract: Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc. Antagonism of the CP-AMPARs reduces cravings. It is necessary to pursue further exploration of the AMPA receptor subunit composition and variations at the level of the NAc for a better understanding of glutamatergic plastic changes. It is known that cocaine and morphine are able to induce changes in dendritic spine morphology by modifying actin cycling. These changes include an initial increase in spine head diameter and increases in AMPA receptor expression, followed by a second stage of spine head diameter retraction and reduction of the AMPA receptors’ expression in spines. Besides glutamate and dopamine, other factors, like brain-derived neurotrophic factor (BDNF), can influence NAc activity and induce changes in dendritic spine density. BDNF also induces drug-related behaviors like self-administration and relapse. Neither apoptosis nor neurogenesis plays a relevant role in the neurobiological processes subjacent to cocaine addiction in adults (rodent or human). Different therapeutic drugs like N-acetylcysteine (NAC), modafinil, acamprosate, and topiramate have been tested in preclinical and/or clinical models for alleviating drug relapse. Moreover, these therapeutic drugs target the glutamatergic circuitry between the PFC and the NAc. NAC and acamprosate have shown inconsistent results in clinical trials. Modafinil and topiramate have shown some success, but more clinical trials are necessary. Based on the current review findings, it could be recommendable to explore therapeutic approaches that include synergism between different drugs and neurotransmitter systems. The discrepancy in the results of some therapeutic drugs between preclinical versus clinical trials for alleviating relapse or drug dependence could be linked to the scarce exploration of preclinical models that mimic polydrug abuse patterns, for example, cocaine plus alcohol. At the clinical level, the pattern of polydrug consumption is a phenomenon of considerable frequency. Finally, as a complement at the end, an updated summary is included about the role of glutamate in other neuropsychiatric disorders (for example, mood disorders, schizophrenia, and others).

Keywords: glutamate, drug addiction, nucleus accumbens

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

A biopsychological review of gambling disorder

Quintero GC

Neuropsychiatric Disease and Treatment 2017, 13:51-60

Published Date: 23 December 2016

Advances in cortical modulation of pain

Quintero GC

Journal of Pain Research 2013, 6:713-725

Published Date: 19 September 2013

Exploration of sex differences in Rhes effects in dopamine mediated behaviors

Quintero GC, Spano D

Neuropsychiatric Disease and Treatment 2011, 7:697-706

Published Date: 17 November 2011

Cortical NR2B NMDA subunit antagonism reduces inflammatory pain in male and female rats

Quintero GC, Herrera J, Bethancourt J

Journal of Pain Research 2011, 4:301-308

Published Date: 26 September 2011

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010