Back to Journals » Journal of Pain Research » Volume 10

Repeated administration of mazindol reduces spontaneous pain-related behaviors without modifying bone density and microarchitecture in a mouse model of complete Freund’s adjuvant-induced knee arthritis

Authors Robledo-González LE, Martínez-Martínez A, Vargas-Muñoz VM, Acosta-Gonzalez RI, Plancarte-Sánchez R, Anaya-Reyes M, Fernández del Valle-Laisequilla C, Reyes-García JG, Jiménez-Andrade JM

Received 9 March 2017

Accepted for publication 26 June 2017

Published 27 July 2017 Volume 2017:10 Pages 1777—1786

DOI https://doi.org/10.2147/JPR.S136581

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Amy Norman

Peer reviewer comments 2

Editor who approved publication: Dr Katherine Hanlon

LE Robledo-González,1 A Martínez-Martínez,1 VM Vargas-Muñoz,1 RI Acosta-González,2 R Plancarte-Sánchez,3 M Anaya-Reyes,4 C Fernández del Valle-Laisequilla,5 JG Reyes-García,6 JM Jiménez-Andrade1

1Laboratorio de Farmacología, 2Departamento de Análisis Clínicos, Unidad Académica Multidisciplinaria Reynosa-Aztlán, UAT, Reynosa, Tamaulipas, Mexico; 3Departamento de Anestesiología, Terapia Intensiva y Clínica del Dolor, Instituto Nacional de Cancerología, Mexico City, Mexico; 4Investigación Clínica y Farmacovigilancia, 5Investigación Clínica y Farmacovigilancia, Productos Medix, S.A. de C.V., Mexico City, Mexico; 6Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico


Background: The role of dopaminergic system in the development of rheumatoid arthritis-related pain, a major symptom in this disease, has not been explored. Therefore, the antinociceptive effect of mazindol, a dopamine uptake inhibitor, was evaluated in a model of complete Freund’s adjuvant (CFA)-induced arthritis. Furthermore, as studies have shown that the dopaminergic system regulates bone metabolism, the effect of mazindol on bone mass and microarchitecture was determined.
Methods: Adult ICR male mice received intra-articular injections of either CFA or saline into the right knee joint every week. Spontaneous pain-like behaviors (flinching and guarding) and locomotor activity were assessed at day 26 post-first CFA, following which, a single intraperitoneally (i.p.) administered dose of mazindol was given (1, 3 and 10 mg/kg). Then, the antinociceptive effect of a repeated administration of 3 mg/kg mazindol (daily, i.p.; day 15–day 26) was evaluated. Additionally, at day 26, the participation of D1-like, D2-like or opioid receptors in the antinociceptive effect of mazindol was evaluated. The effect of mazindol on bone density and microarchitecture was evaluated by micro-computed tomography.
Results: Acute administration of mazindol decreased the spontaneous pain-like behaviors in a dose-dependent manner without reducing the knee edema. However, mazindol at 10 mg/kg significantly increased the locomotor activity; therefore, 3 mg/kg mazindol was used for further studies. Repeated administration of 3 mg/kg mazindol significantly decreased the pain-like behaviors without modifying locomotor activity. The antinociceptive effect of mazindol was blocked by administration of a D2-like receptor antagonist (haloperidol), but not by administration of D1-like receptor antagonist (SCH 23390) or an opioid receptor antagonist (naloxone). Repeated administration of mazindol did not significantly modify the density and microarchitecture of periarticular bone of the arthritic and nonarthritic knee joints.
Conclusion: Results suggest that mazindol via D2-like receptors has an antinociceptive role in mice with CFA-induced knee arthritis without modifying the bone health negatively.

Keywords: dopamine, analgesia, arthritic pain, micro-computed tomography

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]