Back to Journals » OncoTargets and Therapy » Volume 10

Reactive oxygen species mediate soft corals-derived sinuleptolide-induced antiproliferation and DNA damage in oral cancer cells

Authors Chang YT, Huang C, Tang J, Liaw C, Li R, Liu J, Sheu J, Chang HW

Received 28 March 2017

Accepted for publication 15 May 2017

Published 4 July 2017 Volume 2017:10 Pages 3289—3297

DOI https://doi.org/10.2147/OTT.S138123

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Colin Mak

Peer reviewer comments 3

Editor who approved publication: Dr Ingrid Espinoza

Yung-Ting Chang,1,2,* Chiung-Yao Huang,3,* Jen-Yang Tang,4,5 Chih-Chuang Liaw,1,3 Ruei-Nian Li,6 Jing-Ru Liu,6 Jyh-Horng Sheu,1,3,7,8 Hsueh-Wei Chang6,9–12

1Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; 2Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan; 3Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; 4Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; 6Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; 7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; 8Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; 9Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; 10Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan; 11Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; 12Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan

*These authors contributed equally to this work

Abstract: We previously reported that the soft coral-derived bioactive substance, sinuleptolide, can inhibit the proliferation of oral cancer cells in association with oxidative stress. The functional role of oxidative stress in the cell-killing effect of sinuleptolide on oral cancer cells was not investigated as yet. To address this question, we introduced the reactive oxygen species (ROS) scavenger (N-acetylcysteine [NAC]) in a pretreatment to evaluate the sinuleptolide-induced changes to cell viability, morphology, intracellular ROS, mitochondrial superoxide, apoptosis, and DNA damage of oral cancer cells (Ca9-22). After sinuleptolide treatment, antiproliferation, apoptosis-like morphology, ROS/mitochondrial superoxide generation, annexin V-based apoptosis, and γH2AX-based DNA damage were induced. All these changes were blocked by NAC pretreatment at 4 mM for 1 h. This showed that the cell-killing mechanism of oral cancer cells of sinuleptolide is ROS dependent.

Keywords: soft corals, oral cancer, N-acetylcysteine, oxidative stress, γH2AX
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Epigenetic mechanisms in cancer: push and pull between kneaded erasers and fate writers

Farooqi AA, Tang JY, Li RN, Ismail M, Chang YT, Shu CW, Yuan SSF, Liu JR, Mansoor Q, Huang CJ, Chang HW

International Journal of Nanomedicine 2015, 10:3183-3191

Published Date: 24 April 2015