Back to Journals » Neuropsychiatric Disease and Treatment » Volume 11

Prefrontocerebellar transcranial direct current stimulation increases amplitude and decreases latency of P3b component in patients with euthymic bipolar disorder

Authors Bersani FS, Minichino A, Fattapposta F, Bernabei L, Spagnoli F, Mannarelli D, Francesconi M, Pauletti C, Corrado A, Vergnani L, Taddei I, Biondi M, Delle Chiaie R

Received 2 July 2015

Accepted for publication 11 September 2015

Published 19 November 2015 Volume 2015:11 Pages 2913—2917

DOI https://doi.org/10.2147/NDT.S91625

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Xiang Mou

Peer reviewer comments 2

Editor who approved publication: Dr Roger Pinder

Francesco Saverio Bersani, Amedeo Minichino, Francesco Fattapposta, Laura Bernabei, Francesco Spagnoli, Daniela Mannarelli, Marta Francesconi, Caterina Pauletti, Alessandra Corrado, Lucilla Vergnani, Ines Taddei, Massimo Biondi, Roberto Delle Chiaie

Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy

Introduction: Neurocognitive impairments have been observed in patients with bipolar disorder (BD) even during the euthymic phase of the disease, potentially representing trait-associated rather than state-associated characteristics of the disorder. In the present study, we used transcranial direct current stimulation (tDCS) applied to cerebellar and prefrontal cortices to improve the neurophysiological performances of patients with euthymic BD.
Methods: Twenty-five outpatients with BD underwent open-label prefrontocerebellar tDCS for 3 consecutive weeks. Neurophysiological performances were assessed through the examination of the P3b and P3a subcomponents of P300 event-related potential at baseline and after stimulation.
Results: Compared to baseline, P3b component after tDCS showed significantly higher amplitude and shorter latency (latency: Fz P=0.02, Cz P=0.03, and Pz P=0.04; amplitude: Fz P=0.24, Cz P=0.02, and Pz P=0.35).
Conclusion: In our sample of patients with euthymic BD, concomitant prefrontoexcitatory and cerebellar-inhibitory modulations led to improved brain information processing stream. This improvement may at least partially result from neuroplastic modulation of prefrontocerebellar circuitry activity.

Keywords: mood disorders, tDCS, cerebellum, P300, dorsolateral prefrontal cortex, event-related potentials

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]