Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration

Authors Li J, Li Z, Zhou T, Zhang J, Xia H, Li H, He J, He S, Wang L, Yao L, Liang D, Zhu L

Received 11 June 2015

Accepted for publication 19 August 2015

Published 28 September 2015 Volume 2015:10(1) Pages 6027—6037


Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Kiran Vangara

Peer reviewer comments 5

Editor who approved publication: Dr Lei Yang

Jingguo Li, Zhanrong Li, Tianyang Zhou, Junjie Zhang, Huiyun Xia, Heng Li, Jijun He, Siyu He, Liya Wang

Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital and Zhengzhou University People’s Hospital, Zhengzhou, People’s Republic of China

Purpose: The cornea is a main barrier to drug penetration after topical application. The aim of this study was to evaluate the abilities of micelles generated from a positively charged triblock copolymer to penetrate the cornea after topical application.
Methods: The triblock copolymer poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine was synthesized, and the physicochemical properties of the self-assembled polymeric micelles were investigated, including hydrodynamic size, zeta potential, morphology, drug-loading content, drug-loading efficiency, and in vitro drug release. Using fluorescein diacetate as a model drug, the penetration capabilities of the polymeric micelles were monitored in vivo using a two-photon scanning fluorescence microscopy on murine corneas after topical application.
Results: The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared. The polymeric micelles had an average particle size of 28 nm, a zeta potential of approximately +12 mV, and a spherical morphology. The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity. The polymeric micelles also exhibited controlled-release behavior in vitro. Compared to the control, the positively charged polymeric micelles significantly penetrated through the cornea.
Conclusion: Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications.

Keywords: corneal barriers, polymeric micelles, topical administration, corneal penetration, controlled release

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles

Shukla S, Arora V, Jadaun A, Kumar J, Singh N, Jain VK

International Journal of Nanomedicine 2015, 10:4901-4917

Published Date: 31 July 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012


Schuelert N, Russell FA, McDougall JJ

Orthopedic Research and Reviews 2011, 3:9-10

Published Date: 1 March 2011

Topical diclofenac in the treatment of osteoarthritis of the knee

Niklas Schuelert, Fiona A Russell, Jason J McDougall

Orthopedic Research and Reviews 2011, 3:1-8

Published Date: 6 February 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010