Back to Journals » Vascular Health and Risk Management » Volume 15

Polysaccharide peptide (PsP) Ganoderma lucidum: a potential inducer for vascular repair in type 2 diabetes mellitus model

Authors Heriansyah T, Nurwidyaningtyas W, Sargowo D, Tjahjono CT, Wihastuti TA

Received 19 February 2019

Accepted for publication 29 August 2019

Published 3 October 2019 Volume 2019:15 Pages 419—427


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Konstantinos Tziomalos

Teuku Heriansyah,1 Wiwit Nurwidyaningtyas,2 Djanggan Sargowo,3 Cholid Tri Tjahjono,3 Titin Andri Wihastuti4

1Department of Cardiology, Faculty of Medicine, Syah Kuala University, Banda Aceh, Indonesia; 2Department of Biomedical Nursing Science, STIKES Kendedes, Malang, East Java, Indonesia; 3Department of Cardiology, Faculty of Medicine, Brawijaya University, Malang, Indonesia; 4Department of Biomedical Nursing Science, Faculty of Medicine, Brawijaya University, Malang, Indonesia

Correspondence: Titin Andri Wihastuti
Department of Biomedical Nursing Science, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
Tel +62 8 180 510 1827
Email [email protected]

Introduction: The increasing blood glucose level due to insulin resistance which occurs in diabetes mellitus (DM) may cause vascular damage. This study aims to prove the effect of the polysaccharide peptide (PsP) Ganoderma lucidum on improving vascular damage through an increase of circulating endothelial cells and circulating endothelial cells (CEC) ratio, decreased H2O2, triglyceride (TG), total cholesterol (TC) and insulin resistance in type 2 DM.
Methods: Our study is a true experimental study with randomized posttest control group design that used 35 Wistar rats divided into five groups: normal, control (+) and three groups of different variant PsP doses 50, 150 and 300 mg/kg BW (n=7).
Results: By using one-way ANOVA and post-hoc Duncan test, the results show a significant increase of endothelial progenitor cell (EPC) concentration (p=0.000) and ratio EPC:CEC (0.000) by dose-dependent fashion and also reduced CEC concentration (p=0.001), H2O2 (p=0.03), TG (p=0.001), TC (p=0.01) and insulin resistance (p=0.003).
Conclusion: In this study, PsP induced endothelial repairing process and reduced the risk factor with 300 mg/kg BW as optimum dose. However, further research on EPC and CEC detection markers is important. Further research on PsP and clinical trial for commercial uses is also needed.

Keywords: EC, EPC, polysaccharide peptide, type 2 diabetes mellitus, vascular repair
Corrigendum for this paper has been published

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]