Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Phase II trial of weekly nab-paclitaxel and carboplatin treatment with or without trastuzumab as nonanthracycline neoadjuvant chemotherapy for locally advanced breast cancer

Authors Huang L, Chen S, Yao L, Liu GY, Wu J, Shao ZM

Received 4 November 2014

Accepted for publication 22 January 2015

Published 11 March 2015 Volume 2015:10(1) Pages 1969—1975

DOI https://doi.org/10.2147/IJN.S77000

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Lei Yang

Liang Huang,1,2 Sheng Chen,1,2 Ling Yao,1,2 Guangyu Liu,1,2 Jiong Wu,1,2 Zhiming Shao1–3

1Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, 2Department of Oncology, Shanghai Medical College, 3Institutes of Biomedical Science, Fudan University, Shanghai, People’s Republic of China

Background: Neoadjuvant chemotherapy has become standard treatment for women with locally advanced breast cancer. The aim of this study was to compare the efficacy and safety of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) versus paclitaxel combined with carboplatin.
Methods: Thirty patients were treated with neoadjuvant nab-paclitaxel (125 mg/m2, days 1, 8, and 15) and carboplatin (area under the curve =2; days 1, 8, and 15) every 21 days for four cycles. Ninety matched patients received paclitaxel (80 mg/m2, days 1, 8, and 15) and carboplatin every 21 days for four cycles. Weekly trastuzumab is recommended for overexpression of human epidermal receptor-2. The primary endpoint was pathologic complete response (defined as ypT0/is ypN0). Matching was conducted according to six variables: body mass index, clinical tumor stage, clinical lymph node status, estrogen receptor status, HER2 status, and trastuzumab receiving rate.
Results: Ninety percent of patients in the nab-paclitaxel group and 80% of patients in the paclitaxel group experienced a clinical objective response (complete response or partial response; P=0.450). Eight patients in the nab-paclitaxel group and 23 patients in the paclitaxel group had a pathologic complete response in the breast and axillary nodes (26.7% versus 25.6%; P=0.904). Nab-paclitaxel showed a beneficial effective trend on clinical tumor stage II (36.8% versus 15.8%; P=0.051). When trastuzumab was added to nab-paclitaxel, the pathologic complete response rate was not significantly improved more than with trastuzumab and paclitaxel (43.6% versus 39.6%; P=0.769). Carboplatin plus nab-paclitaxel or paclitaxel had similarly low pathologic complete response rates (7.7% versus 10.5%) for the luminal molecular subtype. One (50%) triple-negative patient achieved a pathologic complete response. The nab-paclitaxel regimen caused more grade 4 neutropenia than the paclitaxel regimen (56.7% versus 21.1%; P<0.001).
Conclusion: Our study shows that weekly nab-paclitaxel and carboplatin with or without trastuzumab resulted in a pathologic complete response rate that was not superior to the matched cohorts. Future, larger trials are needed to validate that nab-paclitaxel is beneficial for clinical tumor stage II and the triple-negative subgroup.

Keywords: carboplatin, nanoparticle albumin-bound paclitaxel, neoadjuvant chemotherapy, pathologic complete response
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Patient preference and ease of use for different coagulation factor VIII reconstitution device scenarios: a cross-sectional survey in five European countries

Cimino E, Linari S, Malerba M, Halimeh S, Biondo F, Westfeld M

Patient Preference and Adherence 2014, 8:1713-1720

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010