Back to Journals » Drug Design, Development and Therapy » Volume 10

Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects

Authors Rhee S, Choi Y, Lee S, Oh J, Kim S, Yoon SH, Cho J, Yu K

Received 16 April 2016

Accepted for publication 20 May 2016

Published 10 August 2016 Volume 2016:10 Pages 2525—2534

DOI https://doi.org/10.2147/DDDT.S110712

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Wei Duan


Su-jin Rhee,1,* YoonJung Choi,1,* SeungHwan Lee,1,2 Jaeseong Oh,1 Sung-Jin Kim,3 Seo Hyun Yoon,1 Joo-Youn Cho,1 Kyung-Sang Yu1

1Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; 2Clinical Trials Center, Seoul National University Hospital, Seoul, Republic of Korea; 3Department of Clinical Development, Dong-A ST Co., Ltd., Seoul, Republic of Korea

*These authors contributed equally to this work


Abstract: Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration–time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01–1.12) and 1.02 (0.99–1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration–time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79–0.89) and 0.94 (0.89–0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus.

Keywords: type 2 diabetes, drug interaction, DA-1229, DPP-4 inhibitor, OGTT

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]