Back to Journals » Drug Design, Development and Therapy » Volume 10

Paracetamol sharpens reflection and spatial memory: a double-blind randomized controlled study in healthy volunteers

Authors Pickering G, Macian N, Dubray C, Pereira B

Received 28 April 2016

Accepted for publication 20 June 2016

Published 5 December 2016 Volume 2016:10 Pages 3969—3976

DOI https://doi.org/10.2147/DDDT.S111590

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Amy Norman

Peer reviewer comments 4

Editor who approved publication: Prof. Dr. Wei Duan


Gisèle Pickering,1–3 Nicolas Macian,1,2 Claude Dubray,1–3 Bruno Pereira4

1University Hospital, CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, 2Inserm, CIC 1405, UMR Neurodol 1107, 3Clermont Université, Laboratoire de Pharmacologie, Faculté de médecine, 4CHU de Clermont-Ferrand, Délégation Recherche Clinique Innovation, Clermont-Ferrand, France

Background: Acetaminophen (APAP, paracetamol) mechanism for analgesic and antipyretic outcomes has been largely addressed, but APAP action on cognitive function has not been studied in humans. Animal studies have suggested an improved cognitive performance but the link with analgesic and antipyretic modes of action is incomplete. This study aims at exploring cognitive tests in healthy volunteers in the context of antinociception and temperature regulation. A double-blind randomized controlled study (NCT01390467) was carried out from May 30, 2011 to July 12, 2011.
Methods: Forty healthy volunteers were included and analyzed. Nociceptive thresholds, core temperature (body temperature), and a battery of cognitive tests were recorded before and after oral APAP (2 g) or placebo: Information sampling task for predecisional processing, Stockings of Cambridge for spatial memory, reaction time, delayed matching of sample, and pattern recognition memory tests. Analysis of variance for repeated measures adapted to crossover design was performed and a two-tailed type I error was fixed at 5%.
Results: APAP improved information sampling task (diminution of the number of errors, latency to open boxes, and increased number of opened boxes; all P<0.05). Spatial planning and working memory initial thinking time were decreased (P=0.04). All other tests were not modified by APAP. APAP had an antinociceptive effect (P<0.01) and body temperature did not change.
Conclusion: This study shows for the first time that APAP sharpens decision making and planning strategy in healthy volunteers and that cognitive performance and antinociception are independent of APAP effect on thermogenesis. We suggest that cognitive performance mirrors the analgesic rather than thermic cascade of events, with possibly a central role for serotonergic and cannabinoid systems that need to be explored further in the context of pain and cognition.

Keywords:
paracetamol, cognition, spatial memory, decision making, analgesia, therapeutic dose

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]