Back to Journals » International Journal of Nanomedicine » Volume 15

Paclitaxel/IR1061-Co-Loaded Protein Nanoparticle for Tumor-Targeted and pH/NIR-II-Triggered Synergistic Photothermal-Chemotherapy

Authors He L, Qing F, Li M, Lan D

Received 1 December 2019

Accepted for publication 10 March 2020

Published 2 April 2020 Volume 2020:15 Pages 2337—2349

DOI https://doi.org/10.2147/IJN.S240707

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Mian Wang


Li He,1,* Fangzhen Qing,2,* Maode Li,3 Daitian Lan3

1Department of Thyroid and Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu 610100, Sichuan, People’s Republic of China; 2Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu 610100, Sichuan, People’s Republic of China; 3Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu 610100, Sichuan, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Daitian Lan
Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu 610100, Sichuan, People’s Republic of China
Tel +86-18349176311
Email doctor_yinl@126.com

Purpose: The aim of this study was to develop an “all-in-one” nanoplatform that integrates at the second near-infrared (NIR-II) region dye IR1061 and anticancer drug paclitaxel (PTX) into an apoferritin (AFN) nanocage (IR-AFN@PTX). Simultaneously, folic acid (FA), tumor target molecule,  was conjugated onto IR-AFN@PTX to be IR-AFN@PTX-FA for tumor-targeted and pH/NIR-II-triggered synergistic photothermal-chemotherapy.
Methods: IR1061 was firstly reacted with PEG and then conjugated with AFN to be IR-AFN. Then, FA was conjugated onto the surface of IR-AFN to be IR-AFN-FA. At last, PTX was incorporated into IR-AFN-FA to fabricate a nanoplatform IR-AFN@PTX-FA. The NIR-II photothermal properties and pH/NIR-II triggered drug release were evaluated. The ability of IR-AFN@PTX-FA to target tumors was estimated using optical bioluminescence. In vitro and in vivo synergistic therapeutic effects of pH/NIR-II-triggered and tumor-targeted photothermal-chemotherapy were investigated in 4T1 tumor model.
Results: IR-AFN@PTX-FA showed excellent water solubility and physiological stability, which significantly enhanced the solubility of both IR1061 and PTX. After 5 min of laser irradiation at 1064 nm, IR-AFN@PTX-FA exhibited an effective photothermal effect compared with laser irradiation at 808 nm, even when blocked with 0.6 cm thick chicken breast. Cellular uptake experiments showed IR-AFN@PTX-FA utilized clathrin-mediated and caveolae-mediated endocytosis pathways to enter 4T1 cells, and was then delivered by the endosome to the lysosome. NIR-II laser irradiation and pH could synergistically trigger PTX release, inducing significant tumor inhibition in vitro and in vivo.
Conclusion: As a novel “all-in-one” nanoplatform, IR-AFN@PTX-FA was found to selectively target tumors and showed very efficient NIR-II photothermal effects and pH/NIR-II triggered drug release effects, showing a remarkable, synergistic photothermal-chemotherapy effect.

Keywords: IR1061, second near-infrared window, paclitaxel, apoferritin, “all-in-one” nanoplatform


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]