Back to Journals » International Journal of Nanomedicine » Volume 13

Nanotechnology-based drug delivery systems for control of microbial biofilms: a review

Authors Dos Santos Ramos MA, Da Silva PB, Spósito L, De Toledo LG, Bonifácio BV, Rodero CF, Dos Santos KC, Chorilli M, Bauab TM

Received 12 July 2017

Accepted for publication 11 October 2017

Published 27 February 2018 Volume 2018:13 Pages 1179—1213

DOI https://doi.org/10.2147/IJN.S146195

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Govarthanan Muthusamy

Peer reviewer comments 4

Editor who approved publication: Dr Thomas J Webster


Matheus Aparecido Dos Santos Ramos,1 Patrícia Bento Da Silva,2 Larissa Spósito,1 Luciani Gaspar De Toledo,1 Bruna Vidal Bonifácio,1 Camila Fernanda Rodero,2 Karen Cristina Dos Santos,2 Marlus Chorilli,2 Taís Maria Bauab1

1São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil; 2São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and Medicines. Araraquara, SP, Brazil

Abstract: Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.

Keywords: nanotechnology systems, microbial biofilms, anti-biofilm activity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]