Back to Journals » Infection and Drug Resistance » Volume 12

Molecular mechanisms related to colistin resistance in Enterobacteriaceae

Authors Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, Asgharzadeh M, Yousefi B, Kafil HS

Received 29 December 2018

Accepted for publication 4 March 2019

Published 24 April 2019 Volume 2019:12 Pages 965—975

DOI https://doi.org/10.2147/IDR.S199844

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Colin Mak

Peer reviewer comments 2

Editor who approved publication: Professor Suresh Antony


Zahra Aghapour,1,2 Pourya Gholizadeh,3 Khudaverdi Ganbarov,4 Abed Zahedi Bialvaei,5 Suhad Saad Mahmood,6 Asghar Tanomand,7 Mehdi Yousefi,8 Mohammad Asgharzadeh,9 Bahman Yousefi,9 Hossein Samadi Kafil1

1Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 2Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; 3Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 4Department of Microbiology, Baku State University, Baku, Azerbaijan; 5Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran; 6Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq; 7Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran; 8Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 9Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract: Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance.

Keywords: colistin, Enterobacteriaceae, two-component system, lipid A, mcr genes

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]