Back to Journals » Journal of Pain Research » Volume 11

Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats

Authors Cui X, Liu K, Xu D, Zhang Y, He X, Liu H, Gao X, Zhu B

Received 19 September 2017

Accepted for publication 23 December 2017

Published 5 March 2018 Volume 2018:11 Pages 483—495

DOI https://doi.org/10.2147/JPR.S152015

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr E Alfonso Romero-Sandoval


Xiang Cui,1,2,* Kun Liu,1,* Dandan Xu,1,3 Youyou Zhang,1,4 Xun He,1 Hao Liu,1,5 Xinyan Gao,1 Bing Zhu1

1Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; 2College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China; 3Classic TCM Department, The Affiliated Hospital of Shandong University of TCM, Jinan, China; 4Acupuncture and Massage Department, Hangzhou Qihuang Traditional Chinese Medicine Clinic, Hangzhou, China; 5TCM and Rehabilitation Department, The Third Hospital of Ulanchap, Ulanchap, China

*These authors contributed equally to this work

Background: Acupuncture therapy plays a pivotal role in pain relief, and increasing evidence demonstrates that mast cells (MCs) may mediate acupuncture analgesia. The present study aims to investigate the role of MCs in acupuncture analgesia using c-kit gene mutant–induced MC-deficient rats.
Materials and methods: WsRC-Ws/Ws rats and their wild-type (WT) littermates (WsRC-+/+) were used. The number of MCs in skin of ST36 area was compared in two rats after immunofluorescence labeling. Mechanical withdrawal latency (MWL), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were measured on bilateral plantar for pain threshold evaluation before and after each stimulus. Acupuncture- and moxibustion-like stimuli (43°C, 46°C heat, 1 mA electroacupuncture [EA], 3 mA EA, and manual acupuncture [MA]) were applied randomly on different days.
Results: Fewer MCs were observed in the skin of ST36 in mutant rats compared to WT rats (P<0.001). For pain thresholds, MWL and MWT were higher in WsRC-Ws/Ws compared to WsRC-+/+ on bilateral paws (P<0.05), but TWL was not different between the two rats (P>0.05). Bilateral MWL and MWT in WsRC-+/+ rats increased significantly after each stimulus compared to baseline (P<0.01, P<0.001). In WsRC-Ws/Ws rats, only noxious stimuli could produce antinociceptive effects for mechanical pain (46°C, 3 mA EA, MA) (P<0.01, P<0.001). Additionally, the net increases in MWL and MWT induced by most stimuli were greater in WT than in mutant rats (P<0.05). For thermal nociception, either high- or low-intensity stimuli could significantly augment TWL in two rats (P<0.001), and the net increases of TWL evoked by most stimuli were to the same extent in two genetic variants.
Conclusion: MCs influence the basic mechanical but not thermal pain threshold. MCs participate in acupuncture analgesia in mechanical but not in thermal nociception, in that MC deficiency may attenuate the mechanical analgesia evoked by high-intensity stimuli and eliminate analgesia provoked by low-intensity stimuli.

Keywords: WsRC-Ws/Ws rats, tryptase, stimulus intensity, mechanical withdrawal threshold, thermal withdrawal latency

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]