Back to Journals » Drug Design, Development and Therapy » Volume 11

Investigation of triamterene as an inhibitor of the TGR5 receptor: identification in cells and animals

Authors Li Y, Cheng KC, Niu C, Lo S, Cheng JT, Niu H

Received 7 January 2017

Accepted for publication 13 March 2017

Published 5 April 2017 Volume 2017:11 Pages 1127—1134

DOI https://doi.org/10.2147/DDDT.S131892

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Junhua Mai

Peer reviewer comments 2

Editor who approved publication: Dr Tuo Deng

Yingxiao Li,1,2 Kai Chun Cheng,1 Chiang-Shan Niu,3 Shih-Hsiang Lo,3,4 Juei-Tang Cheng,2,5 Ho-Shan Niu3

1Department of Psychosomatic Internal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; 2Department of Medical Research, Chi Mei Medical Center, Yong Kang, Tainan City, 3Department of Nursing, Tzu Chi College of Technology, Hualien City, 4Division of Cardiology, Department of Internal Medicine, Chung Hsing Branch of Taipei City Hospital, 5Institute of Medical Sciences, College of Health Science, Chang-Jung Christian University, Guei-Ren, Tainan City, Taiwan

Background: G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) has been shown to participate in glucose homeostasis. In animal models, a TGR5 agonist increases incretin secretion to reduce hyperglycemia. Many agonists have been developed for clinical use. However, the effects of TGR5 blockade have not been studied extensively, with the exception of studies using TGR5 knockout mice. Therefore, we investigated the potential effect of triamterene on TGR5.
Methods: We transfected the TGR5 gene into cultured Chinese hamster ovary cells (CHO-K1 cells) to express TGR5. Then, we applied a fluorescent indicator to examine the glucose uptake of these transfected cells. In addition, NCI-H716 cells that secrete incretin were also evaluated. Fura-2, a fluorescence indicator, was applied to determine the changes in calcium concentrations. The levels of cyclic adenosine monophosphate (cAMP) and glucagon-like peptide (GLP-1) were estimated using enzyme-linked immunosorbent assay kits. Moreover, rats with streptozotocin (STZ)-induced type 1-like diabetes were used to investigate the effects in vivo.
Results: Triamterene dose dependently inhibits the increase in glucose uptake induced by TGR5 agonists in CHO-K1 cells expressing the TGR5 gene. In cultured NCI-H716 cells, TGR5 activation also increases GLP-1 secretion by increasing calcium levels. Triamterene inhibits the increased calcium levels by TGR5 activation through competitive antagonism. Moreover, the GLP-1 secretion and increased cAMP levels induced by TGR5 activation are both dose dependently reduced by triamterene. However, treatment with KB-R7943 at a dose sufficient to block the Na+/Ca2+ exchanger (NCX) failed to modify the responses to TGR5 activation in NCI-H716 cells or CHO-K1 cells expressing TGR5. Therefore, the inhibitory effects of triamterene on TGR5 activation do not appear to be related to NCX inhibition. Blockade of TGR5 activation by triamterene was further characterized in vivo using the STZ-induced diabetic rats.
Conclusion: Based on the obtained data, we identified triamterene as a reliable inhibitor of TGR5. Therefore, triamterene can be developed as a clinical inhibitor of TGR5 activation in future studies.

Keywords: triamterene, CHO-K1 cells, TGR5, transfection, sitagliptin
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Development of betulinic acid as an agonist of TGR5 receptor using a new in vitro assay

Lo SH, Cheng KC, Li YX, Chang CH, Cheng JT, Lee KS

Drug Design, Development and Therapy 2016, 10:2669-2676

Published Date: 22 August 2016

Erythropoietin ameliorates hyperglycemia in type 1-like diabetic rats

Niu HS, Chang CH, Niu CS, Cheng JT, Lee KS

Drug Design, Development and Therapy 2016, 10:1877-1884

Published Date: 3 June 2016

Eucommia bark (Du-Zhong) improves diabetic nephropathy without altering blood glucose in type 1-like diabetic rats

Niu HS, Liu IM, Niu CS, Ku PM, Hsu CT, Cheng JT

Drug Design, Development and Therapy 2016, 10:971-978

Published Date: 2 March 2016

Development of PPAR-agonist GW0742 as antidiabetic drug: study in animals

Niu HS, Ku PM, Niu CS, Cheng JT, Lee KS

Drug Design, Development and Therapy 2015, 9:5625-5632

Published Date: 14 October 2015