Back to Journals » Advances and Applications in Bioinformatics and Chemistry » Volume 3

Insights into the classification of small GTPases

Authors Heider D, Hauke S, Pyka M, Kessler D

Published 21 May 2010 Volume 2010:3 Pages 15—24

DOI https://doi.org/10.2147/AABC.S8891

Review by Single-blind

Peer reviewer comments 3


Dominik Heider1, Sascha Hauke3, Martin Pyka4, Daniel Kessler2

1Department of Bioinformatics, Center for Medical Biotechnology, 2Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany; 3Institute of Computer Science, University of Münster, Münster, Germany; 4Interdisciplinary Center for Clinical Research, University Hospital of Münster, Münster, Germany

Abstract: In this study we used a Random Forest-based approach for an assignment of small guanosine triphosphate proteins (GTPases) to specific subgroups. Small GTPases represent an important functional group of proteins that serve as molecular switches in a wide range of fundamental cellular processes, including intracellular transport, movement and signaling events. These proteins have further gained a special emphasis in cancer research, because within the last decades a huge variety of small GTPases from different subgroups could be related to the development of all types of tumors. Using a random forest approach, we were able to identify the most important amino acid positions for the classification process within the small GTPases superfamily and its subgroups. These positions are in line with the results of earlier studies and have been shown to be the essential elements for the different functionalities of the GTPase families. Furthermore, we provide an accurate and reliable software tool (GTPasePred) to identify potential novel GTPases and demonstrate its application to genome sequences.
Keywords: cancer, machine learning, classification, Random Forests, proteins

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]