Back to Journals » Drug Design, Development and Therapy » Volume 11

Inhibition of lymphangiogenesis in vitro and in vivo by the multikinase inhibitor nintedanib

Authors Lin T, Gong L

Received 17 December 2016

Accepted for publication 14 March 2017

Published 5 April 2017 Volume 2017:11 Pages 1147—1158

DOI https://doi.org/10.2147/DDDT.S130297

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Rasika Samarasinghe

Peer reviewer comments 3

Editor who approved publication: Professor Jianbo Sun

Tong Lin,1,2 Lan Gong1,2

1Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 2Key Laboratory of Myopia, Ministry of Health, Shanghai, People’s Republic of China

Purpose: To investigate the feasibility of nintedanib, a novel triple angiokinase inhibitor, for inhibiting lymphatic endothelial cell (LEC)-induced lymphangiogenesis in vitro and inflammatory corneal lymphangiogenesis in vivo.
Materials and methods: Methylthiazolyldiphenyl-tetrazolium bromide (MTT) test, transwell system, and tube-formation assay were used to evaluate the effects of nintedanib on the proliferation, migration, and tube formation of LECs stimulated by vascular endothelial growth factor-C (VEGF-C), basic fibroblast growth factor (bFGF), or platelet-derived growth factor-BB (PDGF-BB). The murine model of suture-induced corneal neovascularization was used to assess the anti-hemangiogenic and anti-lymphangiogenic effects of nintedanib via systemic and topical applications. Corneal flatmounts were stained with lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) and CD31, and the areas of involved blood and lymph vessels were analyzed morphometrically. Corneal cryosections were stained with F4/80 to evaluate inflammatory cell recruitment.
Results: We observed a significant enhanced effect of LEC proliferation, migration, and tube formation with the administration of VEGF-C, PDGF-BB, and bFGF, respectively, which was diminished by nintedanib. Both topical and systemic applications of nintedanib inhibited suture-induced hemangiogenesis and lymphangiogenesis in the murine cornea. A reduction in F4/80+ cell infiltration was observed at day 14 after corneal suture for both systemic and topical applications of nintedanib. In comparison with controls, 61% of F4/80+ cell recruitment was inhibited via the systemic application of nintedanib, while 49% of F4/80+ cell recruitment was inhibited with the topical application of nintedanib.
Conclusion: Nintedanib was shown to inhibit in vitro lymphangiogenesis stimulated by VEGF-C, bFGF, and PDGF-BB. Applied topically or systemically, it effectively inhibited corneal hemangiogenesis and lymphangiogenesis, accompanied by reduced inflammatory cell recruitment, which represents a new promising treatment for graft rejection after penetrating keratoplasty.

Keywords: kinase inhibitor, lymphangiogenesis, in vitro, in vivo
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]