Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Increased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening

Authors Guo Y, Hu B, Tang C, Wu Y, Sun P, Zhang X, Jia Y

Received 2 March 2015

Accepted for publication 3 June 2015

Published 20 July 2015 Volume 2015:10(1) Pages 4593—4603

DOI https://doi.org/10.2147/IJN.S83788

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 6

Editor who approved publication: Dr Lei Yang

Yongyuan Guo,1,* Beibei Hu,2,* Chu Tang,1 Yunpeng Wu,1 Pengfei Sun,1 Xianlong Zhang,3 Yuhua Jia1

1Orthopaedic Department, 2Medical Examination Center, Qilu Hospital of Shandong University, Jinan, 3Orthopaedic Department, The Sixth Affiliated People’s Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, People’s Republic of China

*These authors contributed equally to this work

Abstract: Surface topography has significant influence on good and fast osseointegration of biomedical implants. In this work, ultrasonic shot peening was conducted to modify titanium to produce nanograined (NG) surface. Its ability to induce new bone formation was evaluated using an in vivo animal model. We demonstrated that the NG surface enhanced osteoblast adhesion, proliferation, differentiation, and mineralization in in vitro experiments compared to coarse-grained titanium surface. Push-out test, histological observations, fluorescent labeling, and histomorphometrical analysis consistently indicated that the NG surfaces developed have the higher osseointegration than coarse-grained surfaces. Those results suggest that ultrasonic shot peening has the potential for future use as a surface modification method in biomedical application.

Keywords: ultrasonic shot peening, titanium, in vivo, osseointegeration

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Role of surface charge in determining the biological effects of CdSe/ZnS quantum dots

Liu QQ, Li HX, Xia QY, Liu Y, Xiao K

International Journal of Nanomedicine 2015, 10:7073-7088

Published Date: 16 November 2015

Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages

Guedj AS, Kell AJ, Barnes M, Stals S, Gonçalves D, Girard D, Lavigne C

International Journal of Nanomedicine 2015, 10:5965-5979

Published Date: 23 September 2015

Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles

Naeem M, Cao J, Choi M, Kim WS, Moon HR, Lee BL, Kim MS, Jung Y, Yoo JW

International Journal of Nanomedicine 2015, 10:4565-4580

Published Date: 16 July 2015

Upconversion nanoparticle-mediated photodynamic therapy induces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway

Zhu X, Wang H, Zheng LB, Zhong ZY, Li XS, Zhao J, Kou JY, Jiang YQ, Zheng XF, Liu ZN, Li HX, Cao WW, Tian Y, Wang Y, Yang LM

International Journal of Nanomedicine 2015, 10:3719-3736

Published Date: 22 May 2015

Reduction-responsive cross-linked stearyl peptide for effective delivery of plasmid DNA

Yao C, Tai Z, Wang X, Liu J, Zhu Q, Wu X, Zhang L, Zhang W, Tian J, Gao Y, Gao S

International Journal of Nanomedicine 2015, 10:3403-3416

Published Date: 8 May 2015

Surface characteristics of and in vitro behavior of osteoblast-like cells on titanium with nanotopography prepared by high-energy shot peening

Deng Z, Yin B, Li W, Liu J, Yang J, Zheng T, Zhang D, Yu H, Liu X, Ma J

International Journal of Nanomedicine 2014, 9:5565-5573

Published Date: 28 November 2014