Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

Authors Dai ZY, Li Y, Lu WZ, Jiang DM, Li H, Yan YG, Lv GY, Yang AP

Received 10 June 2015

Accepted for publication 20 July 2015

Published 6 October 2015 Volume 2015:10(1) Pages 6303—6316

DOI https://doi.org/10.2147/IJN.S90273

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Govarthanan Muthusamy

Peer reviewer comments 2

Editor who approved publication: Dr Lei Yang

Zhenyu Dai,1,2,* Yue Li,3,* Weizhong Lu,2,* Dianming Jiang,4 Hong Li,1 Yonggang Yan,1 Guoyu Lv,1 Aiping Yang1

1College of Physical Science and Technology, Sichuan University, Chengdu, 2Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, 3Department of Clinical Laboratory, the Second Affiliated Hospital, 4Department of Orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China

*These authors contributed equally to this work

Objective: To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) complex biomaterials with muscle and bone tissue in an in vivo model.
Methods: Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE) staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM) at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining.
Results: HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that the peripheral tissues of the implanted biomaterials were continuous and lacked bone osteolysis, absorption, necrosis, or osteomyelitis. The connection between implanted biomaterials and bone tissue was tight. The results of HE, Masson, toluidine blue staining and SEM confirmed that the implanted biomaterials were closely connected to the bone defect and that no rejection had taken place. The n-CDHA/PAA biomaterials induced differentiation of a large number of chondrocytes. New bone trabecula began to form at 4 weeks after implanting n-CDHA/PAA biomaterials, and lamellar bone gradually formed at 12 weeks and 24 weeks after implantation. Routine blood and kidney function tests showed no significant changes at 2 weeks and 24 weeks after implantation of both biomaterials.
Conclusion: n-CDHA/PAA composites showed good compatibility in in vivo model. In this study, n-CDHA/PAA were found to be safe, nontoxic, and biologically active in bone repair.

Keywords: in vivo implantation, histological evaluation, n-CDHA/PAA, bioactive composite

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool

Scudiero O, Nigro E, Cantisani M, Colavita I, Leone M, Mercurio FA, Galdiero M, Pessi A, Daniele A, Salvatore F, Galdiero S

International Journal of Nanomedicine 2015, 10:6523-6539

Published Date: 15 October 2015

A new recombinant factor VIII: from genetics to clinical use

Kannicht C, Kohla G, Tiemeyer M, Walter O, Sandberg H

Drug Design, Development and Therapy 2015, 9:3817-3819

Published Date: 23 July 2015

Profile of efraloctocog alfa and its potential in the treatment of hemophilia A

George LA, Camire RM

Journal of Blood Medicine 2015, 6:131-141

Published Date: 24 April 2015

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Managing hemophilia: the role of mobile technology

Khair K, Holland M

Smart Homecare Technology and TeleHealth 2014, 2:39-44

Published Date: 6 May 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010