Back to Journals » Advances and Applications in Bioinformatics and Chemistry » Volume 14

In silico Molecular Docking, DFT Analysis and ADMET Studies of Carbazole Alkaloid and Coumarins from Roots of Clausena anisata: A Potent Inhibitor for Quorum Sensing

Authors Eswaramoorthy R, Hailekiros H, Kedir F, Endale M

Received 18 November 2020

Accepted for publication 3 January 2021

Published 5 February 2021 Volume 2021:14 Pages 13—24

DOI https://doi.org/10.2147/AABC.S290912

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Juan Fernandez-Recio


Rajalakshmanan Eswaramoorthy, Hadgu Hailekiros, Fedlu Kedir, Milkyas Endale

Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, 1888, Ethiopia

Correspondence: Rajalakshmanan Eswaramoorthy
Associate Professor in Bio-Inorganic and Medicinal Chemistry, Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, 1888, Ethiopia
Email rajalakshmanan.e@gmail.com
Milkyas Endale
Associate Professor in Organic Chemistry, Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, 1888, Ethiopia
Email milkyas.endale@astu.edu.et

Introduction: In modern drug design, in silico methods are largely used to understand drug-receptor interactions and quantum chemical properties. In the present study, a computational de novo design approach was used to confirm mode of binding for antibacterial activity, elucidating quantum chemical properties and ADMET-drug-likeness of carbazole alkaloid ( 1) and three coumarins ( 2 4) isolated from roots of Clausena anisata.
Methods: Docking studies were performed with DNA-Gyrase (6F86) and LasR binding domain (2UV0) employing a flexible ligand docking approach using AutoDock Vina. SwissADME prediction and toxicological predictions were performed by ADMET. The optimized structures and molecular electrostatic potential surface of the isolated compounds were predicted by DFT analysis using B3LYP/6-31G basis levels.
Results and Discussion: The docking results revealed that compound 3 showed better docking scores against both DNA gyrase B and LasR binding domain compared with ciprofloxacin with potential as an inhibitor of bacterial DNA gyrase and quorum sensing LasR binding domain. The SwissADME prediction results showed that all the isolated compounds ( 1– 4) satisfy Lipinski’s rule of five with zero violations. Toxicological prediction results suggested that all compounds and ciprofloxacin are non-hepatotoxic, non-carcinogenic, non-irritant, immunogenic, and non-cytotoxic. The DFT analysis results revealed that compound 3 has large electronegativity (χeV), global softness (σ eV− 1), global electrophilicity (ωeV), and mutagenicity value closer to ciprofloxacin (with LD50 value of 480 mg/kg) suggesting better bioactivity and chemical reactivity with considerable intra-molecular charge transfer between electron-donor to electron-acceptor groups.
Conclusion: Overall, compound 3 may serve as a lead molecule that could be developed into a potent E. coli DNA gyrase B inhibitor and efficient inhibitor for quorum sensing auto-inducer LasR binding domain of Pseudomonas aeruginosa.

Keywords: alkaloids, coumarins, DNA gyrase, LasR binding domain, de novo DFT and docking studies

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]