Back to Journals » International Journal of Nanomedicine » Volume 14

Himalayan honey loaded iron oxide nanoparticles: synthesis, characterization and study of antioxidant and antimicrobial activities

Authors Neupane BP, Chaudhary D, Paudel S, Timsina S, Chapagain B, Jamarkattel N, Tiwari BR

Received 1 December 2018

Accepted for publication 1 April 2019

Published 15 May 2019 Volume 2019:14 Pages 3533—3541

DOI https://doi.org/10.2147/IJN.S196671

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Melinda Thomas

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster


Video abstract presented by Bishnu Prasad Neupane.

Views: 363

Bishnu Prasad Neupane, Dinesh Chaudhary, Sanjita Paudel, Sangita Timsina, Bipin Chapagain, Nirmala Jamarkattel, Bishnu Raj Tiwari

School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, Kaski, Nepal

Background: Himalayan honey, a natural product of wild honey bees found in the Himalayan mountains of Nepal, has been used in medicine for many years. The successful development of nanotechnology and beneficial effects of honey would bring a new opportunity to synthesize hybrid nanomaterials for biomedical applications. Thus, the purpose of this study was to load Himalayan honey onto iron oxide nanoparticles (IO-NPs) and study their antioxidant and antimicrobial activities.
Methods: Himalayan honey loaded iron oxide nanoparticles (HHLIO-NPs) were synthesized and X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses were performed for characterization. UV-VIS spectra confirmed the loading of honey onto nanoparticles. The antioxidant activity of these nanoparticles was studied against 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical system. We also tested antimicrobial activity of HHLIO-NPs using well diffusion method towards both Gram-positive and Gram-negative bacterial strains of Staphylococus aureus & Escherichia coli.
Results: From XRD analysis, the average particle size was found to be 33–40 nm. The SEM images show needle shape porous structures of HHLIO-NPs compared to free IO-NPs indicating the surfactant-like behaviour of honey. In DPPH radical system, the scavenging activities of Himalayan honey (HH), free IO-NPs and HHLIO-NPs ranged 7.93-35.99%, 11.02-52.02% and 16.10-80.52% respectively, with corresponding IC50 values of 1.36 mg/mL, 1.09 mg/mL and 0.52 mg/mL. The antimicrobial property of all test samples showed a noteworthy inhibition on both bacterial strains. However, the HH and HHLIO-NPs exhibited strong antibacterial activity against E. coli.
Conclusion: This work reveals that the biological activity of HH is enhanced significantly after loading into IO-NPs. Thus, the HHLIO-NPs would be a promising alternative for antioxidant and antimicrobial agents.

Keywords: honey, biological activities, nanoparticles, cliff bee

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]