Back to Journals » Clinical, Cosmetic and Investigational Dermatology » Volume 11

High frequency equipment promotes antibacterial effects dependent on intensity and exposure time

Authors Wietzikoski Lovato EC, Gurgel Velasquez PA, dos Santos Oliveira C, Baruffi C, Anghinoni T, Machado RC, Lívero FAR, Sato SW, Martins LA

Received 7 November 2017

Accepted for publication 29 December 2017

Published 23 March 2018 Volume 2018:11 Pages 131—135

DOI https://doi.org/10.2147/CCID.S156282

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Jeffrey Weinberg


Evellyn Claudia Wietzikoski Lovato,1 Patrícia Amaral Gurgel Velasquez,1 Cristiana dos Santos Oliveira,1 Camila Baruffi,1 Thais Anghinoni,1 Raquel Costa Machado,1 Francislaine Aparecida dos Reis Lívero,2 Samantha Wietzikoski Sato,1 Lisiane de Almeida Martins1

1Laboratory of Microbiology of Natural Products, Paranaense University, Umuarama, Brazil; 2Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil


Background: The indiscriminate use of antibiotics has caused bacteria to develop mechanisms of resistance to antibacterial agents, limiting treatment options. Therefore, there is a great need for alternative methods to control infections, especially those related to skin. One of the alternative methods is the high frequency equipment (HFE), which is used on skin conditions as an analgesic, an anti-inflammatory, and mainly to accelerate cicatricial processes and have a bactericidal effect through the formation of ozone. This research investigated the antibacterial effect of HFE on standard cultures of bacteria.
Materials and methods: Dilutions (104 colony forming unit mL−1) were performed for Enterobacter aerogenes and Staphylococcus aureus with 24-hour growth bacteria. Then, 1 μL of each dilution was pipetted into suitable medium and the HFE flashing technique was used at intensities of 6, 8 and 10 mA for 30, 60, 90, 120 and 180 seconds. The control group received no treatment. Plates were incubated at 37°C for 24 hours and then read.
Results: The spark at intensity of 6 mA had no bactericidal effect on the E. aerogenes; however, a significant bacterial growth reduction occurred at intensity of 8 mA after 120 and 180 seconds, and at 10 mA, reduction in bacterial growth could already be verified at 30 seconds and total bacterial growth inhibition occurred in 180 seconds. For S. aureus, there was a strong bacterial growth inhibition at all intensities used; however, at 6 mA, absence of bacterium growth after 120 and 180 seconds was observed. By increasing the flashing intensity to 8 and 10 mA, it was observed that the bacterium growth was inhibited after only 30 seconds of irradiation.
Conclusion: The HFE has time-dependent antibacterial effects against E. aerogenes and S. aureus bacteria that have several resistance mechanisms.

Keywords: bactericidal, bacterial viability, gram negative bacteria, gram positive bacteria, Enterobacter aerogenes, Staphylococcus aureus

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]