Back to Journals » International Journal of Nanomedicine » Volume 12

Gold nanorod–based poly(lactic-co-glycolic acid) with manganese dioxide core–shell structured multifunctional nanoplatform for cancer theranostic applications

Authors Wang L, Li D, Hao Y, Niu M, Hu Y, Zhao H, Chang J, Zhang Z, Zhang Y

Received 28 November 2016

Accepted for publication 24 February 2017

Published 13 April 2017 Volume 2017:12 Pages 3059—3075

DOI https://doi.org/10.2147/IJN.S128844

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 6

Editor who approved publication: Dr Lei Yang


Lei Wang,1–3 Dong Li,1,2 Yongwei Hao,1,2 Mengya Niu,1,2 Yujie Hu,1,2 Hongjuan Zhao,1,2 Junbiao Chang,2,3 Zhenzhong Zhang,1,2 Yun Zhang1,2

1School of Pharmaceutical Sciences, Zhengzhou University, 2Key Laboratory of Targeting Therapy and Diagnosis for Critical Disease, Henan Province, 3School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People’s Republic of China

Abstract: Recently, photothermal therapy has become a promising strategy in tumor treatment. However, the therapeutic effect was seriously hampered by the low tissue penetration of laser. Therefore, in this study, radiofrequency (RF) with better tissue penetration was used for tumor hyperthermia. First, one type of gold nanorods (AuNRs) suitable for RF hyperthermia was selected. Then, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with AuNRs and docetaxel (DTX) (PLGA/AuNR/DTX) NPs were constructed. Finally, manganese dioxide (MnO2) ultrathin nanofilms were coated on the surfaces of PLGA/AuNR/DTX NPs by the reduction of KMnO4 to construct the PLGA/AuNR/DTX@MnO2 drug delivery system. This drug delivery system can not only be used for the combined therapy of chemotherapy and RF hyperthermia but can also produce Mn2+ to enable magnetic resonance imaging. Furthermore, the RF hyperthermia and the degradation of MnO2 can significantly promote the controlled drug release in a tumor region. The in vitro and in vivo results suggested that the PLGA/AuNR/DTX@MnO2 multifunctional drug delivery system is a promising nanoplatform for effective cancer theranostic applications.

Keywords:
poly(lactic-co-glycolic acid), gold nanorod, manganese dioxide, radiofrequency, hyperthermia, dual-mode imaging, controlled release

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]