Back to Journals » Drug Design, Development and Therapy » Volume 13

Ginkgo biloba extract-761 protects myocardium by regulating Akt/Nrf2 signal pathway

Authors Chen X, Ren S, Dong J, Qiu C, Chen Y, Tao H

Received 19 October 2018

Accepted for publication 24 December 2018

Published 13 February 2019 Volume 2019:13 Pages 647—655

DOI https://doi.org/10.2147/DDDT.S191537

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Cristina Weinberg

Peer reviewer comments 2

Editor who approved publication: Dr Anastasios Lymperopoulos


Xiao-jie Chen,1 Shu-min Ren,2 Jian-zeng Dong,1 Chun-guang Qiu,1 Ying-wei Chen,1 Hai-long Tao1

1Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; 2Department of Genetics and Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China

Objective: The aim of this study was to investigate the protective effect and mechanism of Ginkgo biloba extract-761 (EGb 761) in the rat with myocardial ischemia–reperfusion injury (MIRI).
Materials and methods: Forty Sprague Dawley rats were randomly divided into following four groups: sham group, I/R group and EGb 761 groups (20 and 40 mg/kg). MIRI model was established after 14 days of administration. The myocardial infarct size and myocardial histology were measured and compared. Meanwhile, the levels of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), troponin T (TnT), TNF-α, IL-6, IL-1β, superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were evaluated. Western blot was used to detect the expression of Caspase-3, Bax, Bcl-2, HO-1, Nrf2, Akt, p-Akt and nuclear protein Nrf2.
Results: The levels of infarct size, CK-MB, LDH, TnT, TNF-α, IL-6 and IL-1β in the EGb 761 groups were significantly lower than those in the ischemia/reperfusion (I/R) group. The content of MDA was lower in the myocardium, whereas the activities of SOD and GSH-Px were higher than those in the I/R group. The expressions of Caspase-3 and Bax in the EGb 761 groups were significantly lower than those in the I/R group, whereas the expressions of Bcl-2, p-Akt and HO-1 and nuclear protein Nrf2 in the EGb 761 groups were higher than those in the I/R group.
Conclusion: EGb 761 might inhibit the apoptosis of myocardial cells and protect the myocardium by activating the Akt/Nrf2 pathway, increasing the expression of HO-1, decreasing oxidative stress and repressing inflammatory reaction.

Keywords: Ginkgo biloba extract, myocardial ischemia-reperfusion injury, oxidative stress, superoxide dismutase
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]