Back to Journals » International Journal of Nanomedicine » Volume 15

Flexible and Transparent Artificial Synapse Devices Based on Thin-Film Transistors with Nanometer Thickness

Authors Dai C, Huo C, Qi S, Dai M, Webster T, Xiao H

Received 16 June 2020

Accepted for publication 12 September 2020

Published 20 October 2020 Volume 2020:15 Pages 8037—8043

DOI https://doi.org/10.2147/IJN.S267536

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Anderson Oliveira Lobo


Chaoqi Dai, 1, 2,* Changhe Huo, 2,* Shaocheng Qi, 2,* Mingzhi Dai, 2, 3 Thomas Webster, 4 Han Xiao 1

1College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People’s Republic of China; 2Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China; 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China; 4Department of Chemical Engineering, Northeastern University, MA, Boston 02115, USA

*These authors contributed equally to this work

Correspondence: Mingzhi Dai
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
Tel +86 151 5831 3993
Email daimz@nimte.ac.cn
Thomas Webster
Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
Tel +1-617-373-6585
Email th.webster@neu.edu

Background: Artificial synaptic behaviors are necessary to investigate and implement since they are considered to be a new computing mechanism for the analysis of complex brain information. However, flexible and transparent artificial synapse devices based on thin-film transistors (TFTs) still need further research.
Purpose: To study the application of flexible and transparent thin-film transistors with nanometer thickness on artificial synapses.
Materials and Methods: Here, we report the design and fabrication of flexible and transparent artificial synapse devices based on TFTs with polyethylene terephthalate (PET) as the flexible substrate, indium tin oxide (ITO) as the gate and a polyvinyl alcohol (PVA) grid insulating layer as the gate insulation layer at room temperature.
Results: The charge and discharge of the carriers in the flexible and transparent thin-film transistors with nanometer thickness can be used for artificial synaptic behavior.
Conclusion: In summary, flexible and transparent thin-film transistors with nanometer thickness can be used as pressure and temperature sensors. Besides, inherent charge transfer characteristics of indium gallium zinc oxide semiconductors have been employed to study the biological synapse-like behaviors, including synaptic plasticity, excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and long-term memory (LTM). More precisely, the spike rate plasticity (SRDP), one representative synaptic plasticity, has been demonstrated. Such TFTs are interesting for building future neuromorphic systems and provide a possibility to act as fundamental blocks for neuromorphic system applications.

Keywords: flexible, transparent, TFTs, thin-film transistors, artificial synapse devices, EPSC, excitatory post-synaptic current, PPF, paired-pulse facilitation

Corrigendum for this paper has been published

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]