Back to Journals » International Journal of Nanomedicine » Volume 7

Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

Authors Chen M, Le DQ, Hein S, Li P, Nygaard JV, Kassem M, Kjems J, Besenbacher F, Bünger C

Received 18 April 2012

Accepted for publication 2 June 2012

Published 3 August 2012 Volume 2012:7 Pages 4285—4297

DOI https://doi.org/10.2147/IJN.S33083

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2


Muwan Chen,1,2 Dang QS Le,1,2 San Hein,2 Pengcheng Li,1 Jens V Nygaard,2 Moustapha Kassem,3 Jørgen Kjems,2 Flemming Besenbacher,2 Cody Bünger1

1Orthopaedic Research Lab, Aarhus University Hospital, Aarhus C, Denmark; 2Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark; 3Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, Denmark

Abstract: Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug.

Keywords: nanoclay, chitosan, scaffold, tissue engineering, drug delivery system

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]