Back to Journals » Infection and Drug Resistance » Volume 12

Expansion of Salmonella Typhi clonal lineages with ampicillin resistance and reduced ciprofloxacin susceptibility in Eastern China

Authors Lv D, Zhang D, Song Q

Received 10 March 2019

Accepted for publication 30 May 2019

Published 22 July 2019 Volume 2019:12 Pages 2215—2221

DOI https://doi.org/10.2147/IDR.S208251

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Ms Justinn Cochran

Peer reviewer comments 2

Editor who approved publication: Dr Joachim Wink


Dingfeng Lv,1 Danyang Zhang,2 Qifa Song2

1Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang Province, People’s Republic of China; 2Department of Microbiology, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo, Zhejiang Province, People’s Republic of China

Purpose: This study was aimed to investigate the dynamics of antimicrobial resistance expansion among different lineages and isolates of S. Typhi.
Materials and methods: The S. Typhi isolates were collected from the patients clinically suspected of typhoid fever in Eastern China during 2005–2017. All isolates were tested retrospectively for susceptibility to eight antimicrobials and the genes related to quinolone and ampicillin resistance, including gyrA, ParC, qnrA, qnrB, qnrS, aac(6´)-Ib-cr, qepA and blaTEM. The isolates were subtyped by PFGE.
Results: Of 140 isolates, all were susceptible to ciprofloxacin, cefotaxime, chloramphenicol, and trimethoprim-sulfamethoxazole, 95 (68%) were nalidixic acid resistant, and 74 (53%) were ampicillin resistant. The resistance to ampicillin and nalidixic acid was first observed in 2006. Among the 95 nalidixic acid-resistant S. Typhi isolates, 62 possessed S83F mutation in gyrA and 25 possessed D87Y mutation. All ampicillin-resistant isolates harbored gene blaTEM-1. PFGE generated 47 distinguishable clonal lineages. Overall, 64% (89/140) belonged to seven prevalent lineages of clustering isolates. PFGE results illustrated the prevalence of nalidixic acid-resistant lineages increased steadily from 19% during 2005–2012 to 50% during 2013–2014, and thereafter to 74% during 2015–2017 and similar development of ampicillin-resistant lineages increased from 6% to 38%, and also to 39%.
Conclusion: The present study indicated the clonal expansion of S. Typhi with ampicillin resistance and reduced ciprofloxacin susceptibility. The findings also suggested that the differential development of antimicrobial resistance to various antimicrobial agents in S. Typhi, showing the rapid increase in ampicillin resistance and reduced ciprofloxacin susceptibility, and the high susceptibility to other traditional antimicrobial agents.

Keywords: ampicillin resistance, reduced ciprofloxacin susceptibility, Salmonella Typhi, clonal expansion

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]