Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

Authors Orlando A, Re F, Sesana S, Rivolta I, Panariti A, Brambilla D, Nicolas J, Couvreur P, Andrieux K, Masserini M, Cazzaniga E

Received 14 November 2012

Accepted for publication 11 January 2013

Published 15 April 2013 Volume 2013:8(1) Pages 1335—1347


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1

1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France

Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the β-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration.
Methods: The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate) nanoparticles (PEG-PACA). We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken.
Results: Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL), together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in both cell lines, starting at the lowest dose (10 µg/mL), with increased production of nitric oxide detected only at the highest dose (1500 µg/mL). Exposure to PEG-PACA affected cell viability and production of nitric oxide in both cell lines, but only at the highest concentration (640 µg/mL).
Conclusion: Liposomal and PEG-PACA nanoparticles have a limited effect on vascular homeostasis and inflammatory response, rendering them potentially suitable for treatment of Alzheimer’s disease. Moreover, they highlight the importance of testing such nanoparticles for production of nitric oxide in vitro in order to identify a therapeutic dose range suitable for use in vivo.

Keywords: nanoparticles, nitric oxide, endothelial cells, macrophages, Alzheimer’s disease

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner

Orlando A, Cazzaniga E, Tringali M, Gullo F, Becchetti A, Minniti S, Taraballi F, Tasciotti E, Re F

International Journal of Nanomedicine 2017, 12:3547-3559

Published Date: 8 May 2017

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung

Numata M, Grinkova YV, Mitchell JR, Chu HW, Sligar SG, Voelker DR

International Journal of Nanomedicine 2013, 8:1417-1427

Published Date: 15 April 2013

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010