Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 15

Easy to Perform Physical Performance Tests to Identify COPD Patients with Low Physical Activity in Clinical Practice

Authors Matkovic Z, Tudoric N, Cvetko D, Esquinas C, Rahelic D, Zarak M, Miravitlles M

Received 19 January 2020

Accepted for publication 30 March 2020

Published 24 April 2020 Volume 2020:15 Pages 921—929

DOI https://doi.org/10.2147/COPD.S246571

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell


Zinka Matkovic,1 Neven Tudoric,1,2 Danijel Cvetko,3 Cristina Esquinas,4 Dario Rahelic,2,5,6 Marko Zarak,7 Marc Miravitlles4

1Department of Internal Medicine, Division of Pulmonary Medicine, Dubrava University Hospital, Zagreb, Croatia; 2University of Zagreb, School of Medicine, Zagreb, Croatia; 3Department of Diagnostic and Interventional Radiology, Dubrava University Hospital, Zagreb, Croatia; 4Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain; 5Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia; 6University of Osijek, School of Medicine, Osijek, Croatia; 7Department of Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia

Correspondence: Zinka Matkovic
Department of Internal Medicine, Division of Pulmonary Medicine, Dubrava University Hospital, Avenija Gojka Šuška 6, Zagreb 10000, Croatia
Tel/Fax +3851290 2488
Email zinka.matkovic@gmail.com

Background: The study investigates which physical performance or muscle function/mass tests significantly correlate with objectively measured physical activity (PA) in patients with chronic obstructive pulmonary disease (COPD) and could potentially serve to identify physically inactive COPD patients in routine clinical practice.
Methods: A cross-sectional, observational study was conducted in outpatients with moderate to very severe COPD. PA was measured during one week with the StepWatch Activity Monitor®, an ankle-worn accelerometer, and expressed in steps per day. Physical fitness and peripheral muscle function/mass were evaluated by the 4-meter gait speed (4MGS) test, the 6-minute walk distance (6MWD), the 30-second chair stand test (30sCST), the timed up and go test (TUGT), handgrip strength, arm muscle area, calf circumference, the fat-free mass index (FFMI), and ultrasound measurement of the quadriceps muscle. Spearman’s rank correlation analysis and ROC analysis were performed.
Results: The study population (N=111, 69% men, mean age 68 years) walked a mean of 8059 steps/day. The daily step count strongly correlated with the 6MWD (rho=0.684, p< 0.001) and moderately with the 4MGS (rho=0.464, p< 0.001), the TUGT (rho= − 0.463, p< 0.001), and the 30sCST (rho=0.402, p< 0.001). The correlation with the FFMI was weak (rho=0.210, p=0.027), while the other parameters did not significantly correlate with the daily step count. The 6MWD had the best discriminative power to identify patients with very low PA defined as < 5000 steps/day (AUC=0.802 [95% CI: 0.720– 0.884], p< 0.001), followed by the TUGT, the 4MGS, and the 30sCST.
Conclusion: The 6MWD, the 4MGS, the TUGT, and the 30sCST are easy to perform in any clinical setting and may be used by clinicians in the screening of physically inactive COPD patients.

Keywords: chronic obstructive pulmonary disease, physical activity, gait speed, muscle function, muscle mass, exercise capacity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]