Back to Journals » Neuropsychiatric Disease and Treatment » Volume 13

Disrupted small-world brain functional network topology in male patients with severe obstructive sleep apnea revealed by resting-state fMRI

Authors Chen L, Fan X, Li H, Nie S, Gong H, Zhang W, Zeng X, Long P, Peng D

Received 23 February 2017

Accepted for publication 19 April 2017

Published 8 June 2017 Volume 2017:13 Pages 1471—1482

DOI https://doi.org/10.2147/NDT.S135426

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Prof. Dr. Roumen Kirov

Peer reviewer comments 3

Editor who approved publication: Professor Wai Kwong Tang


Li-Ting Chen,1,* Xiao-Le Fan,2,* Hai-Jun Li,1 Si Nie,1 Hong-Han Gong,1 Wei Zhang,3 Xian-Jun Zeng,1 Ping Long,4 De-Chang Peng1

1Department of Radiology, 2Department of General Surgery, 3Department of Pneumology, 4Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China

*These authors contributed equally to this work

Purpose: Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder that can damage cognitive function. However, the functional network organization remains poorly understood. The aim of this study was to investigate the topological properties of OSA patients using a graph theoretical analysis.
Patients and methods: A total of 30 male patients with untreated severe OSA and 25 male education- and age-matched good sleepers (GSs) underwent functional magnetic resonance imaging (MRI) examinations. Clinical and cognitive evaluations were conducted by an experienced psychologist. GRETNA (a toolbox for topological analysis of imaging connectomics) was used to construct the brain functional network and calculate the small-world properties (γ, λ, σ, Eglob, and Eloc). Relationships between these small-world properties and clinical and neuropsychological assessments were investigated in OSA patients.
Results: The networks of both OSA patients and GSs exhibited efficient small-world topology over the sparsity range of 0.05–0.40. Compared with GSs, the OSA group had significantly decreased γ, but significantly increased λ and σ. The OSA group’s brain network showed significantly decreased Eglob (P<0.05) over the sparsity range of 0.09–0.15, but significantly increased Eloc over the sparsity range of 0.23–0.40. In OSA patients, γ was significantly negatively correlated with apnea–hypopnea index (AHI; r=−0.326, P=0.015) and Epworth Sleepiness Scale (ESS; r=−0.274, P=0.043), λ was significantly positively correlated with AHI (r=0.373, P=0.005) and ESS (r=0.269, P=0.047), and σ was significantly negatively correlated with AHI (r=−0.363, P=0.007) and ESS (r=−0.295, P=0.029).
Conclusion: Our results suggest that the high degree of local integration and integrity of the brain connections in OSA patients may be disrupted. The topological alterations of small-world properties may be the mechanism of cognitive impairment in OSA patients. In addition, σ, γ, and λ could be used as a quantitative physiological index for auxiliary clinical diagnoses.

Keywords: obstructive sleep apnea, cognitive impairment, small-world, functional MRI, topological properties

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]