Back to Browse Journals » OncoTargets and Therapy » Volume 9

Dairy consumption and lung cancer risk: a meta-analysis of prospective cohort studies

Authors Yu Y, Li H, Xu K, Li X, Hu C, Wei H, Zeng X, Jing X

Received 4 September 2015

Accepted for publication 11 November 2015

Published 30 December 2015 Volume 2016:9 Pages 111—116

DOI https://doi.org/10.2147/OTT.S95714

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Jia Fan

Peer reviewer comments 2

Editor who approved publication: Professor Daniele Santini

Yi Yu,1,* Hui Li,1,* Kaiwu Xu,2,* Xin Li,1 Chunlin Hu,1 Hongyan Wei,1 Xiaoyun Zeng,1 Xiaoli Jing1

1Emergency Department, 2Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China

*These authors contributed equally to this work

Background: Lung cancer risk is the leading cause of cancer-related deaths worldwide. We conducted a meta-analysis to evaluate the relationship between dairy consumption and lung cancer risk.
Methods: The databases included EMBASE, Medline (PubMed), and Web of Science. The relationship between dairy consumption and lung cancer risk was analyzed by relative risk or odds ratio estimates with 95% confidence intervals (CIs). We identified eight prospective cohort studies, which amounted to 10,344 cases and 61,901 participants.
Results: For milk intake, relative risk was 0.95 (95% CI: 0.76–1.15); heterogeneity was 70.2% (P=0.003). For total dairy product intake, relative risk was 0.96 (95% CI: 0.89–1.03), heterogeneity was 68.4% (P=0.004).
Conclusion: There was no significant association between dairy consumption and lung cancer risk.

Keywords: lung cancer, meta-analysis, milk, dairy products

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010