Back to Journals » International Journal of Nanomedicine » Volume 11

c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma

Authors Huang Y, Liu W, Gao F, Fang X, Chen Y

Received 13 January 2016

Accepted for publication 9 March 2016

Published 19 April 2016 Volume 2016:11 Pages 1629—1641


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Lei Yang

YuKun Huang,1 Wenchao Liu,1 Feng Gao,1 Xiaoling Fang,2 Yanzuo Chen1

1Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, 2Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China

Abstract: Brain glioma therapy is an important challenge in oncology. Here, doxorubicin (DOX) and paclitaxel (PTX)-loaded cyclic arginine-glycine-aspartic acid peptide (c(RGDyK))-decorated Pluronic micelles (cyclic arginine-glycine-aspartic acid peptide-decorated Pluronic micelles loaded with doxorubicin and paclitaxel [RGD-PF-DP]) were designed as a potential targeted delivery system to enhance blood–brain barrier penetration and improve drug accumulation via integrin-mediated transcytosis/endocytosis and based on integrin overexpression in blood–brain barrier and glioma cells. The physicochemical characterization of RGD-PF-DP revealed a satisfactory size of 28.5±0.12 nm with uniform distribution and core-shell structure. The transport rates across the in vitro blood–brain barrier model, cellular uptake, cytotoxicity, and apoptosis of U87 malignant glioblastoma cells of RGD-PF-DP were significantly greater than those of non-c(RGDyK)-decorated Pluronic micelles. In vivo fluorescence imaging demonstrated the specificity and efficacy of intracranial tumor accumulation of RGD-PF-DP. RGD-PF-DP displayed an extended median survival time of 39 days, with no serious body weight loss during the regimen. No acute toxicity to major organs was observed in mice receiving treatment doses via intravenous administration. In conclusion, RGD-PF-DP could be a promising vehicle for enhanced doxorubicin and paclitaxel delivery in patients with brain glioma.

Keywords: Pluronic micelles, integrin, blood–brain barrier, brain glioma, targeted delivery

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]