Back to Journals » Infection and Drug Resistance » Volume 7

Comparative analysis of the infectivity rate of both Borrelia burgdorferi and Anaplasma phagocytophilum in humans and dogs in a New Jersey community

Authors Gaito A, Gjivoje V, Lutz S, Baxter B

Received 2 June 2014

Accepted for publication 24 June 2014

Published 7 August 2014 Volume 2014:7 Pages 199—201

DOI https://doi.org/10.2147/IDR.S68742

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Andrea Gaito,1 Vedrana Gjivoje,2 Sebastian Lutz,1 Ben Baxter2

1Private medical practice, Somerset County, NJ, USA; 2Bernardsville Animal Hospital, Somerset County, NJ, USA

Abstract: Ticks are important vectors of disease and transmit an extensive array of bacterial, viral and protozoan diseases to both humans and dogs within a community. Borrelia burgdorferi, the causative agent of Lyme disease, has been extensively studied within both the human and veterinary population. Anaplasma phagocytophilum, an intracellular rickettsial pathogen also transmitted by ixodid ticks, has emerged as an important zoonotic infection with significant veterinary and medical implications, and is responsible for both canine granulocytic anaplasmosis and human granulocytic anaplasmosis. Multiple surveys exist in the international literature referencing infectivity rates of both of these diseases separately in both the dog and human populations. This is the first study to simultaneously examine the infectivity rate of both anaplasmosis and Lyme disease in humans and dogs in a community endemic for tick-borne diseases.

Keywords: Lyme disease, anaplasmosis, dogs, humans
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010