Back to Journals » Journal of Pain Research » Volume 7

Cingulate metabolites during pain and morphine treatment as assessed by magnetic resonance spectroscopy

Authors Hansen T, Olesen AE, Simonsen CW, Drewes A, Frøkjær JB

Received 22 January 2014

Accepted for publication 17 February 2014

Published 19 May 2014 Volume 2014:7 Pages 269—276

DOI https://doi.org/10.2147/JPR.S61193

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3


Tine Maria Hansen,1 Anne Estrup Olesen,2 Carsten Wiberg Simonsen,1 Asbjørn Mohr Drewes,2,3 Jens Brøndum Frøkjær1

1Mech-Sense, Department of Radiology, 2Mech-Sense, Department of Gastroenterology, 3Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark

Background: Experimental investigation of cerebral mechanisms underlying pain and analgesia are important in the development of methods for diagnosis and treatment of pain. The aim of the current study was to explore brain metabolites in response to pain and treatment with morphine.
Methods: Proton magnetic resonance spectroscopy of the anterior cingulate cortex was performed in 20 healthy volunteers (13 males and seven females, aged 24.9±2.6 years) during rest and acute pain before and during treatment with 30 mg of oral morphine or placebo in a randomized, double-blinded, cross-over study design. Pain was evoked by skin stimulation applied to the right upper leg using a contact heat-evoked potential stimulator.
Results: Data from 12 subjects were valid for analysis. Painful stimulation induced an increase in N-acetylaspartate/creatine compared with rest (F=5.5, P=0.04). During treatment with morphine, painful stimulation induced decreased glutamate/creatine (F=7.3, P=0.02), myo-inositol/creatine (F=8.38, P=0.02), and N-acetylaspartate/creatine (F=13.8, P=0.004) concentrations, whereas an increase in the pain-evoked N-acetylaspartate/creatine concentration (F=6.1, P=0.04) was seen during treatment with placebo.
Conclusion: This explorative study indicates that neuronal metabolites in the anterior cingulate cortex, such as N-acetylaspartate, glutamate, and myo-inositol, could be related to the physiology of pain and treatment with morphine. This experimental method has the potential to enable the study of brain metabolites involved in pain and its treatment, and may in the future be used to provide further insight into these mechanisms.

Keywords: magnetic resonance imaging, spectroscopy, pain, morphine, anterior cingulate cortex

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]