Back to Journals » International Journal of Nanomedicine » Volume 15

Chitosan-Coated PLGA Nanoparticles for Enhanced Ocular Anti-Inflammatory Efficacy of Atorvastatin Calcium

Authors Arafa MG, Girgis GNS, El-Dahan MS

Received 4 November 2019

Accepted for publication 15 January 2020

Published 28 February 2020 Volume 2020:15 Pages 1335—1347


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Anderson Oliveira Lobo

Mona G Arafa,1,2 Germeen NS Girgis,3 Marwa S El-Dahan3

1Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt; 2Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura 35516, Egypt; 3Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt

Correspondence: Mona G Arafa Suez Desert Road, El Sherouk City, Cairo Governorate 11837, Egypt
Tel +20 1005055557
Fax +20 226300010

Background: Atorvastatin calcium (AT) is an ocular anti-inflammatory with limited bioavailability when taken orally due to its low solubility in low pH and extensive first-pass effect. To overcome these problems, AT was entrapped in polymeric nanoparticles (NPs) to improve surface properties and sustained release, in addition to achieving site-specific action.
Methods: AT was entrapped in chitosan (CS)-coated polylactic-co-glycolic acid (PLGA) NPs to form AT-PLGA-CS-NPs (F1). F1 and free AT were embedded in thermosensitive Pluronic® 127-hydroxypropyl methylcellulose (HPMC) to form thermosensitive gels (F2) and (F3) while F4 is AT suspension in water. F1 was assessed for size, surface charge, polydispersity index (PDI), and morphology. F2 and F3 were examined for gelation temperature, gel strength, pH, and viscosity. In vitro release of the four formulations was also investigated. The ocular irritancy and anti-inflammatory efficacy of formulations against prostaglandin E1-(PGE1) induced ocular inflammation in rabbits were investigated by counting the polymorphonuclear leukocytes (PMNs) and protein migrated in tears.
Results: Oval F1 of 80.0– 190.0± 21.6 nm exhibited a PDI of 0.331 and zeta potential of ‏ 17.4± 5.62 mV with a positive surface charge. F2 and F3 gelation temperatures were 35.17± 0.22°C and 36.93± 0.31°C, viscosity 12,243± 0.64 and 9759± 0.22 cP, gel strength 15.56± 0.6 and 12.45± 0.1 s, and pHs of 7.4± 0.02 and 7.4± 0.1, respectively. In vitro release of F1, F2, F3, and F4 were 48.21± 0.31, 26.48± 0.5, 84.76± 0.11, and 100% after 24 hrs, respectively. All formulations were non-irritant. F2 significantly inhibited lid closure up to 3 h, PMN counts and proteins in tear fluids up to 5 h compared to other formulations.
Conclusion: AT-PLGA-CS-NP thermosensitive gels proved to be successful ocular anti-inflammatory drug delivery systems.

Keywords: atorvastatin calcium, nanoparticles, PLGA, chitosan, ocular, thermosensitive gel

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]