Back to Journals » International Journal of Nanomedicine » Volume 16

Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight

Authors Zarghami Dehaghani M, Bagheri B, Yousefi F, Nasiriasayesh A, Hamed Mashhadzadeh A, Zarrintaj P, Rabiee N, Bagherzadeh M, Fierro V, Celzard A, Saeb MR, Mostafavi E

Received 22 December 2020

Accepted for publication 18 February 2021

Published 4 March 2021 Volume 2021:16 Pages 1837—1847

DOI https://doi.org/10.2147/IJN.S298699

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Professor Israel (Rudi) Rubinstein


Maryam Zarghami Dehaghani,1,* Babak Bagheri,2,* Farrokh Yousefi,3 Abbasali Nasiriasayesh,4 Amin Hamed Mashhadzadeh,5 Payam Zarrintaj,6 Navid Rabiee,7 Mojtaba Bagherzadeh,7 Vanessa Fierro,8 Alain Celzard,8 Mohammad Reza Saeb,5 Ebrahim Mostafavi9,10

1School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; 2Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; 3Department of Physics, University of Zanjan, Zanjan, 45195-313, Iran; 4Industrial Management Institute, Tehran, Iran; 5Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran; 6School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA; 7Department of Chemistry, Sharif University of Technology, Tehran, Iran; 8Université De Lorraine, CNRS, IJL, Epinal, 88000, France; 9Stanford Cardiovascular Institute, Stanford, CA, USA; 10Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA

*These authors contributed equally to this work

Correspondence: Ebrahim Mostafavi
Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
Email [email protected]
Amin Hamed Mashhadzadeh
Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
Email [email protected]

Introduction: Nanotube-based drug delivery systems have received considerable attention because of their large internal volume to encapsulate the drug and the ability to penetrate tissues, cells, and bacteria. In this regard, understanding the interaction between the drug and the nanotube to evaluate the encapsulation behavior of the drug in the nanotube is of crucial importance.
Methods: In this work, the encapsulation process of the cationic antimicrobial peptide named cRW3 in the biocompatible boron nitride nanotube (BNNT) was investigated under the Canonical ensemble (NVT) by molecular dynamics (MD) simulation.
Results: The peptide was absorbed into the BNNT by van der Waals (vdW) interaction between cRW3 and the BNNT, in which the vdW interaction decreased during the simulation process and reached the value of − 142.7 kcal·mol− 1 at 4 ns.
Discussion: The increase in the potential mean force profile of the encapsulated peptide during the pulling process of cRW3 out of the nanotube showed that its insertion into the BNNT occurred spontaneously and that the inserted peptide had the desired stability. The energy barrier at the entrance of the BNNT caused a pause of 0.45 ns when half of the peptide was inside the BNNT during the encapsulation process. Therefore, during this period, the peptide experienced the weakest movement and the smallest conformational changes.

Keywords: boron nitride nanotube, drug delivery, antimicrobial peptide, molecular dynamic simulation, encapsulation

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]